A363485 Number of integer partitions of n covering an initial interval of positive integers with more than one mode.
0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 2, 1, 3, 1, 2, 6, 5, 3, 8, 4, 8, 11, 13, 9, 17, 17, 19, 25, 24, 23, 44, 35, 39, 54, 55, 63, 83, 79, 86, 104, 119, 125, 157, 164, 178, 220, 237, 251, 297, 324, 357, 413, 439, 486, 562, 607, 673, 765, 828, 901, 1040, 1117, 1220
Offset: 0
Keywords
Examples
The a(n) partitions for n = {3, 6, 12, 15, 16, 18}: (21) (321) (332211) (54321) (443221) (4433211) (2211) (3222111) (433221) (3332221) (5432211) (22221111) (443211) (4332211) (43332111) (33222111) (33322111) (333222111) (322221111) (43222111) (333321111) (2222211111) (3322221111) (32222211111) (222222111111)
Crossrefs
The complement is counted by A363484.
Programs
-
Mathematica
Table[If[n==0,0,Length[Select[IntegerPartitions[n], Union[#]==Range[Max@@#]&&Length[Commonest[#]]>1&]]],{n,0,30}]
Comments