cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363499 a(n) = Sum_{k=0..n} floor(sqrt(k))^5.

This page as a plain text file.
%I A363499 #35 Jul 20 2023 07:22:48
%S A363499 0,1,2,3,35,67,99,131,163,406,649,892,1135,1378,1621,1864,2888,3912,
%T A363499 4936,5960,6984,8008,9032,10056,11080,14205,17330,20455,23580,26705,
%U A363499 29830,32955,36080,39205,42330,45455,53231,61007,68783,76559,84335,92111,99887
%N A363499 a(n) = Sum_{k=0..n} floor(sqrt(k))^5.
%C A363499 Partial sums of the fifth powers of the terms of A000196.
%H A363499 Karl-Heinz Hofmann, <a href="/A363499/b363499.txt">Table of n, a(n) for n = 0..10000</a>
%F A363499 a(n) = (n+1)*m^5 - (1/84)*m*(m+1)*(2*m+1)*(3*m-1)*(10*m^3-7*m+4), where m = floor(sqrt(n)).
%t A363499 Table[(n + 1) #^5 - (1/84) # (# + 1)*(2 # + 1)*(3 # - 1)*(10 #^3 - 7 # + 4) &[Floor@ Sqrt[n]], {n, 0, 42}] (* _Michael De Vlieger_, Jun 10 2023 *)
%o A363499 (Python)
%o A363499 from math import isqrt
%o A363499 def A363499(n): return (m:=isqrt(n))**5 *(n+1) - (m*(m+1)*(2*m+1)*(3*m-1)*(10*m**3-7*m+4))//84 # _Karl-Heinz Hofmann_, Jul 17 2023
%Y A363499 Sums of powers of A000196: A022554 (1st), A174060 (2nd), A363497 (3rd), A363498 (4th), this sequence (5th).
%K A363499 nonn,easy
%O A363499 0,3
%A A363499 _Hans J. H. Tuenter_, Jun 05 2023