cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363502 Decimal expansion of Product_{k>=1} k*sinh(1/k).

This page as a plain text file.
%I A363502 #21 Jul 30 2023 02:26:40
%S A363502 1,3,0,7,9,7,0,9,3,6,6,6,4,2,8,3,6,4,9,0,1,2,1,0,4,4,7,6,0,0,7,0,5,6,
%T A363502 3,2,0,4,6,5,5,1,5,6,8,3,1,3,8,2,2,3,5,0,6,7,0,5,6,4,8,2,2,5,9,7,9,2,
%U A363502 2,9,3,0,9,8,0,0,9,9,5,4,3,6,4,3,2,1,9,2,2,8,4,8,3,5,9,9,9,0,4,7,0,1,3,7,6
%N A363502 Decimal expansion of Product_{k>=1} k*sinh(1/k).
%F A363502 Equals exp(Sum_{k>=1} 2^(2*k-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number.
%F A363502 Equals exp(Sum_{k>=1} (-1)^(k+1)*zeta(2*k)^2/(k*Pi^(2*k))).
%e A363502 1.30797093666428364901210447600705632046551568313822...
%p A363502 evalf(exp(sum(log(k*sinh(1/k)), k = 1 .. infinity)), 120)
%t A363502 Block[{$MaxExtraPrecision = 1000}, RealDigits[Exp[Sum[(-1)^(k + 1) * Zeta[2*k]^2 / (k*Pi^(2*k)), {k, 1, 200}]], 10, 120][[1]]]
%o A363502 (PARI) exp(-sumpos(k=1,-log(k*sinh(1/k))))
%Y A363502 Similar constants: A118817, A249673, A295219.
%Y A363502 Cf. A027641, A027642.
%K A363502 nonn,cons
%O A363502 1,2
%A A363502 _Amiram Eldar_, Jul 30 2023