This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363522 #36 Jul 10 2023 12:13:24 %S A363522 1,1,2,1,2,1,3,1,2,1,2,3,2,1,1,3,2,2,1,3,3,1,3,1,2,1,4,2,1,3,1,3,1,3, %T A363522 1,4,1,3,2,1,1,4,1,4,2,3,0,2,3,3,3,2,2,2,1,0,3,5,1,4,1,4,0,2,2,3,4,1, %U A363522 1,3,3,0,5,1,4,1,2,1,3,4,0,3,3,2,2,4,0,3 %N A363522 Number of integers k such that there are exactly n distinct numbers j with k^2 < j < (k+1)^2 which can be expressed as sum of two squares. %C A363522 Number of occurrences of n in A077773. %H A363522 Rainer Rosenthal, <a href="/A363522/b363522.txt">Table of n, a(n) for n = 0..10000</a> %e A363522 a(0) = 1, since A077773(k) = 0 at the single index k = 0. %e A363522 a(6) = 3, since A077773(k) = 6 for these 3 indices: k = 8, 9, and 11. %e A363522 a(46) = 0, since A077773 doesn't contain 46; see A363761, A363762 and A363763. %o A363522 (Python) %o A363522 from sympy import factorint %o A363522 def A363522(n): %o A363522 s = 0 %o A363522 for k in range(n>>1,((n+1)**2<<1)+1): %o A363522 c = 0 %o A363522 for m in range(k**2+1,(k+1)**2): %o A363522 if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items()): %o A363522 c += 1 %o A363522 if c>n: %o A363522 break %o A363522 if c==n: %o A363522 s += 1 %o A363522 return s # _Chai Wah Wu_, Jul 10 2023 %Y A363522 Cf. A077773, A363761, A363762, A363763. %K A363522 nonn %O A363522 0,3 %A A363522 _Rainer Rosenthal_, Jul 07 2023