A363524 a(n) = 0 if 4 divides n + 1, otherwise (-1)^floor((n + 1) / 4) * 2^floor(n / 2).
1, 1, 2, 0, -4, -4, -8, 0, 16, 16, 32, 0, -64, -64, -128, 0, 256, 256, 512, 0, -1024, -1024, -2048, 0, 4096, 4096, 8192, 0, -16384, -16384, -32768, 0, 65536, 65536, 131072, 0, -262144, -262144, -524288, 0, 1048576, 1048576, 2097152, 0, -4194304, -4194304
Offset: 0
Links
- Winston de Greef, Table of n, a(n) for n = 0..6603
- Kwang-Wu Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,-4).
Programs
-
Maple
a := n -> if irem(n + 1, 4) = 0 then 0 else (-1)^iquo(n + 1, 4) * 2^iquo(n, 2) fi: seq(a(n), n = 0..49); # Alternative: gf := (2*x^2 + x + 1)/(4*x^4 + 1): ser := series(gf, x, 24): seq(coeff(ser, x, n), n = 0..20);
-
Mathematica
A363524list[nmax_]:=LinearRecurrence[{0,0,0,-4},{1,1,2,0},nmax+1];A363524list[100] (* Paolo Xausa, Aug 06 2023 *)
-
PARI
a(n)=if(n % 4 == 3, 0, (-1)^((n + 1) \ 4) * 2^(n \ 2)) \\ Winston de Greef, Jun 30 2023
-
SageMath
def a(n): return 0 if 4.divides(n + 1) else (-1)^((n + 1) // 4) * 2^(n // 2) print([a(n) for n in range(45)])
Comments