This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363525 #9 Jun 11 2023 11:18:36 %S A363525 1,2,2,3,2,4,2,4,5,5,3,10,4,7,13,10,8,29,10,18,39,20,20,70,29,40,105, %T A363525 65,55,166,73,132,242,141,129,476,183,248,580,487,312,984,422,868, %U A363525 1345,825,724,2709,949,1505,2756,2902,1611,4664,2289,4942,5828,4278 %N A363525 Number of integer partitions of n with weighted sum divisible by reverse-weighted sum. %C A363525 The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse. %e A363525 The partition (6,5,4,3,2,1,1,1,1) has weighted sum 80, reverse 160, so is counted under a(24). %e A363525 The a(n) partitions for n = 1, 2, 4, 6, 9, 12, 14 (A..E = 10-14): %e A363525 1 2 4 6 9 C E %e A363525 11 22 33 333 66 77 %e A363525 1111 222 711 444 65111 %e A363525 111111 6111 921 73211 %e A363525 111111111 3333 2222222 %e A363525 7311 71111111 %e A363525 63111 11111111111111 %e A363525 222222 %e A363525 621111 %e A363525 111111111111 %t A363525 Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[#]], Total[Accumulate[Reverse[#]]]]&]],{n,30}] %Y A363525 The case of equality (and reciprocal version) is A000005. %Y A363525 The strict case is A363528. %Y A363525 A000041 counts integer partitions, strict A000009. %Y A363525 A053632 counts compositions by weighted sum, rank statistic A029931/A359042. %Y A363525 A264034 counts partitions by weighted sum, reverse A358194. %Y A363525 A304818 gives weighted sum of prime indices, row-sums of A359361. %Y A363525 A318283 gives weighted sum of reversed prime indices, row-sums of A358136. %Y A363525 A320387 counts multisets by weighted sum, zero-based A359678. %Y A363525 A363526 = partitions with weighted sum 3n, ranks A363530, reverse A363531. %Y A363525 Cf. A000016, A008284, A067538, A222855, A222970, A358137, A359755, A362558, A362559, A362560, A363527. %K A363525 nonn %O A363525 1,2 %A A363525 _Gus Wiseman_, Jun 10 2023