This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363527 #7 Jun 19 2023 22:35:35 %S A363527 1,0,0,0,0,1,0,0,1,1,1,1,1,1,3,4,4,6,8,7,10,13,13,21,25,24,37,39,40, %T A363527 58,63,72,94,106,118,144,165,181,224,256,277,341,387,417,504,560,615, %U A363527 743,818,899,1066,1171,1285,1502,1655,1819,2108,2315,2547,2915 %N A363527 Number of integer partitions of n with weighted sum 3*n. %C A363527 Are the partitions counted all of length > 4? %C A363527 The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27. %e A363527 The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8). %e A363527 The a(13) = 1 through a(18) = 8 partitions: %e A363527 (332221) (333221) (33333) (442222) (443222) (443331) %e A363527 (4322111) (522222) (5322211) (4433111) (444222) %e A363527 (71111111) (4332111) (55111111) (5332211) (533322) %e A363527 (63111111) (63211111) (55211111) (4443111) %e A363527 (63311111) (7222221) %e A363527 (72221111) (55311111) %e A363527 (64221111) %e A363527 (A11111111) %t A363527 Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==3n&]],{n,0,30}] %Y A363527 The version for compositions is A231429. %Y A363527 The reverse version is A363526. %Y A363527 These partitions have ranks A363531. %Y A363527 A000041 counts integer partitions, strict A000009. %Y A363527 A053632 counts compositions by weighted sum, rank statistic A029931/A359042. %Y A363527 A264034 counts partitions by weighted sum, reverse A358194. %Y A363527 A304818 gives weighted sum of prime indices, row-sums of A359361. %Y A363527 A318283 gives weighted sum of reversed prime indices, row-sums of A358136. %Y A363527 A320387 counts multisets by weighted sum, zero-based A359678. %Y A363527 Cf. A000016, A008284, A067538, A222855, A222970, A359755, A360672, A360675, A362559, A362560, A363525, A363528, A363532. %K A363527 nonn %O A363527 0,15 %A A363527 _Gus Wiseman_, Jun 11 2023