cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363529 E.g.f. satisfies A(x) = exp(x * (1 + x * A(x)^4)).

This page as a plain text file.
%I A363529 #12 Feb 16 2025 08:34:05
%S A363529 1,1,3,31,409,7361,170251,4732351,154694961,5814634753,246946119571,
%T A363529 11698927124831,611660759515081,34984757221103041,2173041881789331099,
%U A363529 145669007565799127551,10482025117382045382241,805892200757926620144641
%N A363529 E.g.f. satisfies A(x) = exp(x * (1 + x * A(x)^4)).
%H A363529 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A363529 E.g.f.: exp( x - LambertW(-4*x^2*exp(4*x))/4 ).
%F A363529 a(n) = n! * Sum_{k=0..n} (4*n-4*k+1)^(k-1) * binomial(k,n-k)/k!.
%o A363529 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-4*x^2*exp(4*x))/4)))
%Y A363529 Cf. A125500, A143768, A363354.
%K A363529 nonn
%O A363529 0,3
%A A363529 _Seiichi Manyama_, Aug 17 2023