cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363530 Heinz numbers of integer partitions such that 3*(sum) = (weighted sum).

Original entry on oeis.org

1, 32, 40, 60, 100, 126, 210, 243, 294, 351, 550, 585, 770, 819, 1210, 1274, 1275, 1287, 1521, 1785, 2002, 2366, 2793, 2805, 2875, 3125, 3315, 4025, 4114, 4335, 4389, 4862, 5187, 6325, 6358, 6422, 6783, 7105, 7475, 7581, 8349, 8398, 9386, 9775, 9867, 10925
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18.

Examples

			The terms together with their prime indices begin:
      1: {}
     32: {1,1,1,1,1}
     40: {1,1,1,3}
     60: {1,1,2,3}
    100: {1,1,3,3}
    126: {1,2,2,4}
    210: {1,2,3,4}
    243: {2,2,2,2,2}
    294: {1,2,4,4}
    351: {2,2,2,6}
    550: {1,3,3,5}
    585: {2,2,3,6}
    770: {1,3,4,5}
    819: {2,2,4,6}
		

Crossrefs

These partitions are counted by A363527.
The reverse version is A363531, counted by A363526.
A053632 counts compositions by weighted sum.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[Reverse[prix[#]]]]&]

Formula

A056239(a(n)) = A304818(a(n))/3.