A363530 Heinz numbers of integer partitions such that 3*(sum) = (weighted sum).
1, 32, 40, 60, 100, 126, 210, 243, 294, 351, 550, 585, 770, 819, 1210, 1274, 1275, 1287, 1521, 1785, 2002, 2366, 2793, 2805, 2875, 3125, 3315, 4025, 4114, 4335, 4389, 4862, 5187, 6325, 6358, 6422, 6783, 7105, 7475, 7581, 8349, 8398, 9386, 9775, 9867, 10925
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 32: {1,1,1,1,1} 40: {1,1,1,3} 60: {1,1,2,3} 100: {1,1,3,3} 126: {1,2,2,4} 210: {1,2,3,4} 243: {2,2,2,2,2} 294: {1,2,4,4} 351: {2,2,2,6} 550: {1,3,3,5} 585: {2,2,3,6} 770: {1,3,4,5} 819: {2,2,4,6}
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[Reverse[prix[#]]]]&]
Comments