This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363531 #5 Jun 12 2023 08:42:37 %S A363531 1,32,144,216,243,672,1008,1350,2176,2250,2520,2673,3125,3969,4160, %T A363531 4200,5940,6240,6615,7344,7424,7744,8262,9261,9800,9900,10400,11616, %U A363531 12250,12312,12375,13104,13720,14720,14742,16767,16807,17150,19360,21840,22080,23100 %N A363531 Heinz numbers of integer partitions such that 3*(sum) = (reverse-weighted sum). %C A363531 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A363531 The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27. %F A363531 A056239(a(n)) = A318283(a(n))/3. %e A363531 The terms together with their prime indices begin: %e A363531 1: {} %e A363531 32: {1,1,1,1,1} %e A363531 144: {1,1,1,1,2,2} %e A363531 216: {1,1,1,2,2,2} %e A363531 243: {2,2,2,2,2} %e A363531 672: {1,1,1,1,1,2,4} %e A363531 1008: {1,1,1,1,2,2,4} %e A363531 1350: {1,2,2,2,3,3} %e A363531 2176: {1,1,1,1,1,1,1,7} %e A363531 2250: {1,2,2,3,3,3} %e A363531 2520: {1,1,1,2,2,3,4} %e A363531 2673: {2,2,2,2,2,5} %e A363531 3125: {3,3,3,3,3} %e A363531 3969: {2,2,2,2,4,4} %e A363531 4160: {1,1,1,1,1,1,3,6} %t A363531 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A363531 Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[prix[#]]]&] %Y A363531 These partitions are counted by A363526. %Y A363531 The non-reverse version is A363530, counted by A363527. %Y A363531 A053632 counts compositions by weighted sum. %Y A363531 A055396 gives minimum prime index, maximum A061395. %Y A363531 A112798 lists prime indices, length A001222, sum A056239. %Y A363531 A264034 counts partitions by weighted sum, reverse A358194. %Y A363531 A304818 gives weighted sum of prime indices, row-sums of A359361. %Y A363531 A318283 gives weighted sum of reversed prime indices, row-sums of A358136. %Y A363531 A320387 counts multisets by weighted sum, zero-based A359678. %Y A363531 Cf. A000041, A000720, A001221, A046660, A106529, A118914, A124010, A181819, A215366, A359362, A359755. %K A363531 nonn %O A363531 1,2 %A A363531 _Gus Wiseman_, Jun 12 2023