This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363532 #6 Jun 15 2023 20:06:40 %S A363532 1,0,0,1,0,0,2,2,0,3,3,3,5,5,10,12,7,14,25,18,22,48,48,41,67,82,89, %T A363532 111,140,170,220,214,264,392,386,436,623,693,756,934,1102,1301,1565, %U A363532 1697,2132,2616,2727,3192,4062,4550,5000,6132,7197,8067,9338,10750,12683 %N A363532 Number of integer partitions of n with weighted alternating sum 0. %C A363532 We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i. %e A363532 The a(11) = 3 through a(15) = 12 partitions (A = 10): %e A363532 (33221) (84) (751) (662) (A5) %e A363532 (44111) (6222) (5332) (4442) (8322) %e A363532 (222221) (7311) (6421) (5531) (9411) %e A363532 (621111) (532111) (43331) (722211) %e A363532 (51111111) (42211111) (54221) (831111) %e A363532 (65111) (3322221) %e A363532 (432221) (3333111) %e A363532 (443111) (4422111) %e A363532 (32222111) (5511111) %e A363532 (33311111) (22222221) %e A363532 (72111111) %e A363532 (6111111111) %t A363532 altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}]; %t A363532 Table[Length[Select[IntegerPartitions[n],altwtsum[#]==0&]],{n,0,30}] %Y A363532 The unweighted version is A035363. %Y A363532 These partitions have ranks A363621. %Y A363532 The triangle for this rank statistic is A363623, reverse A363622. %Y A363532 The version for compositions is A363626. %Y A363532 A000041 counts integer partitions. %Y A363532 A264034 counts partitions by weighted sum, reverse A358194. %Y A363532 A304818 gives weighted sum of prime indices, reverse A318283. %Y A363532 A316524 gives alternating sum of prime indices, reverse A344616. %Y A363532 A363619 gives weighted alternating sum of prime indices, reverse A363620. %Y A363532 A363624 gives weighted alternating sum of Heinz partition, reverse A363625. %Y A363532 Cf. A008284, A053632, A106529, A261079, A320387, A360672, A360675, A362559. %K A363532 nonn %O A363532 0,7 %A A363532 _Gus Wiseman_, Jun 14 2023