cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363537 Rewrite A087980(n) = Product_{i=1..m} p(i)^e(i) instead as Sum_{i=1..m} 2^(i-1), where m = omega(A087980(n)) = A001221(A087980(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 5, 16, 9, 32, 6, 17, 64, 10, 33, 128, 18, 7, 65, 12, 256, 34, 11, 129, 20, 512, 66, 19, 257, 36, 1024, 13, 130, 24, 35, 513, 68, 2048, 21, 258, 40, 67, 1025, 132, 4096, 37, 514, 72, 14, 131, 2049, 25, 260, 48, 8192, 69, 1026, 136, 22, 259, 4097, 41, 516, 80, 16384, 133, 2050, 264, 38
Offset: 1

Views

Author

Michael De Vlieger, Jun 09 2023

Keywords

Comments

Permutation of nonnegative numbers.
Rewriting nonnegative numbers n = Sum_{i=1..A000120(n)} 2^i instead as Product_{i=1..A000120(n)} p(i)^(e(i)+1) gives A362227.

Examples

			Table relating this sequence to A087980, where b(n) = A087980(n), f(n) = A067255(n), g(n) = A272011(n), and a(n)_2 the binary expansion of a(n):
   n   b(n)  f(b(n))  a(n)  g(a(n))   a(n)_2
   1     1   0         0
   2     2   1         1    0             1
   3     4   2         2    1            1.
   4     8   3         4    2           1..
   5    12   2,1       3    1,0          11
   6    16   4         8    3          1...
   7    24   3,1       5    2,0         1.1
   8    32   5        16    4         1....
   9    48   4,1       9    3,0        1..1
  10    64   6        32    5        1.....
  11    72   3,2       6    2,1         11.
  12    96   5,1      17    4,0       1...1
  13   128   7        64    6       1......
  14   144   4,2      10    3,1        1.1.
  15   192   6,1      33    5,0      1....1
  16   256   8       128    7      1.......
  17   288   5,2      18    4,1       1..1.
  18   360   3,2,1     7    2,1,0       111
  ...
		

Crossrefs

Programs

  • Mathematica
    m = 15; f[n_] := Times @@ MapIndexed[Prime[First[#2]]^(#1 + 1) &, Length[#] - Position[#, 1][[All, 1]]] &[IntegerDigits[n, 2]]; SortBy[Select[Array[{#, f[#]} &, 2^(m + 1)], Last[#] <= 2^m &], Last][[All, 1]]

Formula

a(2^k) = 2^(k-1) for k > 0.
a(A006939(k)) = 2^k-1 for k > 0.