cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363542 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * (2^k + A(x^k)) * x^k/k ).

This page as a plain text file.
%I A363542 #10 Jun 09 2023 08:54:19
%S A363542 1,3,5,14,38,114,360,1166,3872,13094,44961,156244,548636,1943333,
%T A363542 6935817,24917586,90039163,327029681,1193258619,4371901789,
%U A363542 16077606949,59325057056,219579151797,815017718383,3032959638204,11313632991360,42295634914403
%N A363542 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * (2^k + A(x^k)) * x^k/k ).
%F A363542 A(x) = Sum_{k>=0} a(k) * x^k = (1+2*x) * Product_{k>=0} (1+x^(k+1))^a(k).
%F A363542 a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( (-2)^k + Sum_{d|k} (-1)^(k/d) * d * a(d-1) ) * a(n-k).
%o A363542 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*(2^k+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);
%Y A363542 Cf. A038075, A363543.
%Y A363542 Cf. A362389.
%K A363542 nonn
%O A363542 0,2
%A A363542 _Seiichi Manyama_, Jun 09 2023