A363544 Least prime p such that 2n can be written as the sum or absolute difference of p and the next prime, or -1 if no such prime exists.
-1, 3, 7, 23, 3, 139, 5, 113, 1831, 7, 887, 1129, 11, 2477, 2971, 13, 5591, 1327, 17, 30593, 19333, 19, 15683, 81463, 28229, 31907, 23, 35617, 82073, 44293, 29, 34061, 89689, 162143, 31, 173359, 31397, 404597, 212701, 37, 542603, 265621, 41, 155921, 544279, 43, 927869, 1100977
Offset: 0
Keywords
Links
- Carlos Rivera, Conjecture 21. Rivera's conjecture, The Prime Puzzles and Problems Connection.
Programs
-
Python
from sympy import sieve as prime def A363544(n): if n == 0: return -1 k = 2 while (prime[k] + prime[k+1]) < 2*n and (prime[k] + prime[k+1]) // 2 != n: k += 1 if (prime[k] + prime[k+1]) // 2 == n: return prime[k] k = 2 while (prime[k+1] - prime[k]) // 2 != n: k += 1 return prime[k] print([A363544(n) for n in range(0,50)])
Comments