cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363547 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).

This page as a plain text file.
%I A363547 #14 Jun 09 2023 15:05:02
%S A363547 1,1,4,13,47,168,635,2420,9460,37445,150309,609568,2495710,10298332,
%T A363547 42793974,178910161,752034697,3176346092,13473881397,57378127986,
%U A363547 245205968960,1051257068207,4520229295852,19488595397346,84231899582543,364893870958302
%N A363547 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^2) ).
%H A363547 Seiichi Manyama, <a href="/A363547/b363547.txt">Table of n, a(n) for n = 0..1000</a>
%F A363547 A(x) = (1 - x)^2 * (B(x)/x - 2) where B(x) is the g.f. of A029857.
%o A363547 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^2))+x*O(x^n))); Vec(A);
%Y A363547 Cf. A052855, A363548.
%Y A363547 Cf. A029857, A363545.
%K A363547 nonn
%O A363547 0,3
%A A363547 _Seiichi Manyama_, Jun 09 2023