cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363548 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^3) ).

This page as a plain text file.
%I A363548 #13 Jun 09 2023 15:05:07
%S A363548 1,1,5,19,79,326,1414,6198,27794,126233,580885,2700135,12665756,
%T A363548 59869222,284919675,1364009722,6564545500,31742029545,154134718727,
%U A363548 751316355122,3674923035139,18031965040197,88734141475113,437813286219942,2165445447313147
%N A363548 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 - x^k)^3) ).
%H A363548 Seiichi Manyama, <a href="/A363548/b363548.txt">Table of n, a(n) for n = 0..1000</a>
%F A363548 A(x) = (1 - x)^3 * B(x) where B(x) is the g.f. of A363507.
%F A363548 a(n) = Sum_{k=0..3} (-1)^k * binomial(3,k) * A363507(n-k).
%o A363548 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1-x^k)^3))+x*O(x^n))); Vec(A);
%Y A363548 Cf. A052855, A363547.
%Y A363548 Cf. A363507, A363546.
%K A363548 nonn
%O A363548 0,3
%A A363548 _Seiichi Manyama_, Jun 09 2023