This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363558 #17 Aug 07 2023 08:04:01 %S A363558 1,5,16,77,256,1104,4121,16832,65536,264688,1048617,4205568,16779008, %T A363558 67162112,268436016,1073999165,4294967296,17180983296,68719549696, %U A363558 274882887680,1099511628896,4398068904021,17592186086656,70368840646656,281474978676736,1125900326286464 %N A363558 Expansion of g.f. A(x) = Sum_{n=-oo..+oo} x^n * (2 + x^n)^(2*n). %C A363558 Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds as a formal power series for all y. %H A363558 Paul D. Hanna, <a href="/A363558/b363558.txt">Table of n, a(n) for n = 0..300</a> %F A363558 The g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas. %F A363558 (1.a) A(x) = Sum_{n=-oo..+oo} x^n * (2 + x^n)^(2*n). %F A363558 (1.b) A(x) = Sum_{n=-oo..+oo} x^n * (2 - x^n)^(2*n). %F A363558 (2.a) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - 2*x^n)^(2*n). %F A363558 (2.b) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + 2*x^n)^(2*n). %F A363558 (3.a) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (2 + x^n)^n. %F A363558 (3.b) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (-2 + x^n)^n. %F A363558 (4.a) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + 2*x^n)^n. %F A363558 (4.b) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - 2*x^n)^n. %F A363558 From _Paul D. Hanna_, Aug 06 2023: (Start) %F A363558 The following generating functions are extensions of _Peter Bala_'s formulas given in A260147. %F A363558 (5.a) A(x^2) = Sum_{n=-oo..+oo} x^(2*n+1) * (2 + x^(2*n+1))^(2*n+1). %F A363558 (5.b) A(x^2) = Sum_{n=-oo..+oo} x^(2*n*(2*n+1)) / (1 + 2*x^(2*n+1))^(2*n+1). %F A363558 (End) %F A363558 a(2^n) = 4^(2^n) for n > 0 (conjecture). %F A363558 a(p) = p*2^(p-1) + 4^p for primes p > 3 (conjecture). %e A363558 G.f.: A(x) = 1 + 5*x + 16*x^2 + 77*x^3 + 256*x^4 + 1104*x^5 + 4121*x^6 + 16832*x^7 + 65536*x^8 + 264688*x^9 + 1048617*x^10 + ... %o A363558 (PARI) {a(n) = my(A); A = sum(m=-n-1,n+1, x^m * (2 + x^m +x*O(x^n))^(2*m) ); polcoeff(A,n)} %o A363558 for(n=0,30,print1(a(n),", ")) %Y A363558 Cf. A260147, A363559, A363569, A363561. %K A363558 nonn %O A363558 0,2 %A A363558 _Paul D. Hanna_, Aug 01 2023