This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363560 #17 Aug 16 2023 10:26:23 %S A363560 1,1,3,18,126,966,7863,66696,583111,5217513,47547405,439777242, %T A363560 4117802109,38956162023,371795456373,3575401032544,34611064585803, %U A363560 336998629754631,3298200003722997,32428037256038775,320151289224740949,3172536384239678856,31544584654878015766 %N A363560 Expansion of g.f. A(x) satisfying A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9). %C A363560 Compare to: G(x)^3 = 1 + x*(G(x) + G(x)^2 + G(x)^3) holds when G(x) = 1/(1-x). %C A363560 Conjecture: a(n) == 0 (mod 3) for n > 0 except when n == 1 (mod 7). %H A363560 Paul D. Hanna, <a href="/A363560/b363560.txt">Table of n, a(n) for n = 0..500</a> %F A363560 G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas. %F A363560 (1) A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7). %F A363560 (2) A(x)^2 = 1 + x*(A(x) + A(x)^2 - A(x)^3 + A(x)^5 - A(x)^6 + A(x)^8) . %F A363560 (3) A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9). %F A363560 (4) A(x)^4 = 1 + x*(A(x) + A(x)^2 + A(x)^4 - A(x)^6 + A(x)^7 + A(x)^10). %F A363560 (5) A(x)^5 = 1 + x*(A(x) + A(x)^2 + A(x)^4 + A(x)^5 - A(x)^6 + A(x)^8 + A(x)^11). %F A363560 (6) A(x)^6 = 1 + x*(A(x) + A(x)^2 + A(x)^4 + A(x)^5 + A(x)^9 + A(x)^12). %F A363560 (7) A(x) = (1/x) * Series_Reversion( x/(1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^5) ) ) ). %e A363560 G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 126*x^4 + 966*x^5 + 7863*x^6 + 66696*x^7 + 583111*x^8 + 5217513*x^9 + 47547405*x^10 + ... %e A363560 such that %e A363560 A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9). %e A363560 Also, %e A363560 A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7). %e A363560 RELATED TABLE. %e A363560 The table of coefficients in A(x)^n begins: %e A363560 n=1: [1, 1, 3, 18, 126, 966, 7863, 66696, ...]; %e A363560 n=2: [1, 2, 7, 42, 297, 2292, 18738, 159450, ...]; %e A363560 n=3: [1, 3, 12, 73, 522, 4059, 33354, 284886, ...]; %e A363560 n=4: [1, 4, 18, 112, 811, 6360, 52566, 450888, ...]; %e A363560 n=5: [1, 5, 25, 160, 1175, 9301, 77370, 666780, ...]; %e A363560 n=6: [1, 6, 33, 218, 1626, 13002, 108919, 943524, ...]; %e A363560 n=7: [1, 7, 42, 287, 2177, 17598, 148540, 1293937, ...]; %e A363560 n=8: [1, 8, 52, 368, 2842, 23240, 197752, 1732928, ...]; %e A363560 n=9: [1, 9, 63, 462, 3636, 30096, 258285, 2277756, ...]; %e A363560 ... %e A363560 from which one can verify the formulas involving powers of A(x). %e A363560 RELATED SERIES. %e A363560 Let G(x) = 1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^5) ) %e A363560 where %e A363560 G(x) = 1 + x + 2*x^2 + 11*x^3 + 61*x^4 + 380*x^5 + 2502*x^6 + 17163*x^7 + 121312*x^8 + 877370*x^9 + 6461765*x^10 + ... %e A363560 then %e A363560 A(x) = G(x*A(x)), %e A363560 and so %e A363560 A(x) = (1/x) * Series_Reversion( x/G(x) ); %e A363560 thus, %e A363560 x*A(x) = (A(x) - 1) / (1 + (A(x) - 1)*(A(x)^2 + A(x)^5) ) %e A363560 which is equivalent to %e A363560 A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7). %e A363560 TERMS MODULO 3. %e A363560 It appears that a(n) == 0 (mod 3) for n > 0 except when n == 1 (mod 7). %e A363560 The residues of a(7*k + 1) modulo 3, for k >= 0, begin %e A363560 a(7*k + 1) (mod 3) = [1, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, ...]. %o A363560 (PARI) {a(n) = my(A=1+x); for(i=1, n, A = (1 + x*(A + A^2 + A^9) +x*O(x^n))^(1/3) ); polcoeff(A, n)} %o A363560 for(n=0, 30, print1(a(n), ", ")) %Y A363560 Cf. A300048, A161634. %K A363560 nonn %O A363560 0,3 %A A363560 _Paul D. Hanna_, Aug 12 2023