cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363567 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + x^k)^2) ).

This page as a plain text file.
%I A363567 #9 Jun 10 2023 11:18:16
%S A363567 1,1,0,1,1,0,1,2,1,1,3,3,2,4,7,7,7,12,17,17,22,37,47,51,73,110,133,
%T A363567 162,242,339,412,545,798,1065,1342,1860,2648,3474,4547,6400,8874,
%U A363567 11665,15754,22152,30205,40201,55301,77115,104463,141087,195669,270620,366902
%N A363567 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + x^k)^2) ).
%F A363567 A(x) = (1 + x)^2 * B(x) where B(x) is the g.f. of A363565.
%F A363567 a(n) = Sum_{k=0..2} binomial(2,k) * A363565(n-k).
%o A363567 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1+x^k)^2))+x*O(x^n))); Vec(A);
%Y A363567 Cf. A198518, A363575.
%Y A363567 Cf. A363547, A363565.
%K A363567 nonn
%O A363567 0,8
%A A363567 _Seiichi Manyama_, Jun 10 2023