cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363579 G.f. satisfies A(x) = exp( Sum_{k>=1} ((-3)^k + A(x^k)) * x^k/k ).

This page as a plain text file.
%I A363579 #12 Jun 10 2023 11:18:13
%S A363579 1,-2,5,-11,27,-70,188,-502,1355,-3712,10269,-28546,79777,-224153,
%T A363579 632581,-1791644,5091109,-14510079,41464784,-118773034,340950420,
%U A363579 -980660721,2825700987,-8155455450,23573749136,-68236663474,197774787066,-573915774310,1667300177595
%N A363579 G.f. satisfies A(x) = exp( Sum_{k>=1} ((-3)^k + A(x^k)) * x^k/k ).
%F A363579 A(x) = B(x)/(1 + 3*x) where B(x) is the g.f. of A363581.
%F A363579 A(x) = Sum_{k>=0} a(k) * x^k = 1/(1+3*x) * 1/Product_{k>=0} (1-x^(k+1))^a(k).
%F A363579 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( (-3)^k + Sum_{d|k} d * a(d-1) ) * a(n-k).
%o A363579 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, ((-3)^k+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);
%Y A363579 Cf. A001678, A036249, A362389, A363541, A363578.
%Y A363579 Cf. A363581.
%K A363579 sign
%O A363579 0,2
%A A363579 _Seiichi Manyama_, Jun 10 2023