cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363580 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + 2*x^k)) ).

This page as a plain text file.
%I A363580 #11 Jun 10 2023 09:57:25
%S A363580 1,1,0,2,0,2,1,6,-2,11,-1,30,-21,76,-60,223,-245,653,-817,2031,-2935,
%T A363580 6521,-10067,21455,-35425,72152,-123756,246752,-436854,855852,
%U A363580 -1546777,3001811,-5513604,10630676,-19747742,37949424,-71115077,136415279,-257301742,493313335
%N A363580 G.f. satisfies A(x) = exp( Sum_{k>=1} A(x^k) * x^k/(k * (1 + 2*x^k)) ).
%F A363580 A(x) = (1 + 2*x) * B(x) where B(x) is the g.f. of A363578.
%F A363580 a(n) = A363578(n) + 2*A363578(n-1) for n > 0.
%o A363580 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, x^k)*x^k/(k*(1+2*x^k)))+x*O(x^n))); Vec(A);
%Y A363580 Cf. A052855, A198518, A363545, A363546, A363581.
%Y A363580 Cf. A363578.
%K A363580 sign
%O A363580 0,4
%A A363580 _Seiichi Manyama_, Jun 10 2023