cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363582 Number of admissible mesa sets among Stirling permutations of order n.

This page as a plain text file.
%I A363582 #21 Jun 14 2023 12:12:07
%S A363582 1,2,3,6,12,22,44,88,169,338,676,1322,2644,5288,10433,20866,41732,
%T A363582 82736,165472,330944,658012,1316024,2632048,5242778,10485556,20971112,
%U A363582 41822049,83644098,167288196,333885702,667771404,1335542808,2667053601,5334107202,10668214404
%N A363582 Number of admissible mesa sets among Stirling permutations of order n.
%D A363582 Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, "Mesas of Stirling permutations," preprint.
%H A363582 Alois P. Heinz, <a href="/A363582/b363582.txt">Table of n, a(n) for n = 1..3323</a>
%F A363582 Let n = 3*k+r, where r is in {0,1,2}, and let C_(x,y) be the rational Catalan numbers (A328901/A328902). Then a(n) = 2^(n-1) - Sum_{i=0..k-1} 2^(3*i+r)*C_(2*(k-i)-1,k-i).
%e A363582 For n = 4, the a(4) = 6 admissible pinnacle sets for Stirling permutations of order 4 are {}, {2}, {3}, {4}, {2,4}, and {3,4}.
%p A363582 a:= proc(n) option remember; `if`(n<4, n, (2*n*(2*n-3)*
%p A363582       a(n-1)+27*(n-4)*(n-2)*(a(n-3)/2-a(n-4)))/(n*(2*n-3)))
%p A363582     end:
%p A363582 seq(a(n), n=1..45);  # _Alois P. Heinz_, Jun 13 2023
%Y A363582 Cf. A289871, A359066, A359067, A328901, A328902.
%K A363582 nonn
%O A363582 1,2
%A A363582 _Bridget Tenner_, Jun 10 2023
%E A363582 More terms from _Alois P. Heinz_, Jun 13 2023