A363593 Numbers k such that both A359804(k) and A359804(k+1) are odd.
3, 8, 22, 29, 36, 42, 45, 53, 57, 64, 82, 85, 88, 94, 110, 119, 124, 132, 135, 141, 144, 152, 159, 165, 170, 177, 183, 190, 195, 201, 214, 220, 224, 231, 239, 246, 252, 264, 270, 281, 287, 292, 299, 302, 306, 309, 323, 328, 334, 341, 347, 350, 356, 361, 372, 378, 381, 386, 397, 402, 411, 418, 424, 431
Offset: 1
Keywords
Examples
Table of a(n) showing i = b(n) = p(i)*m(i), j = b(n+1) = p(j)*m(j), and k = b(n+2), where p(n) = A361503(n) and m(n) = A359804(n)/A361503(n): n a(n) i j k p(i) p(j) m(i) m(j) ---------------------------------------------- 1 3 3 5 4 3 5 1 1 2 8 7 9 8 7 3 1 3 3 22 33 35 16 11 7 3 5 4 29 45 49 26 5 7 9 7 5 36 55 63 32 5 7 11 9 6 42 13 65 34 13 5 1 13 7 45 39 75 38 3 5 13 15 8 53 85 51 46 5 3 17 17 9 57 91 99 52 7 11 13 9 10 64 57 105 58 3 7 19 15 11 82 143 81 62 11 3 13 27 12 85 135 147 64 5 7 27 21 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot A359804(n) mod 2 at (x,y) = (n mod 256, -floor(n/256)), 8X magnification, where white represents even terms, and odd terms are shown in color. Singleton odd numbers are shown in dark blue, while red indicates two odd terms in a row. Shows A359804(n) mod 2 for n = 1..2^16.
- Michael De Vlieger, Plot A359804(n) mod 2 at (x,y) = (n mod 2^10, -floor(n/2^10)), where white represents even terms, and odd terms are shown in color. Singleton odd numbers are shown in dark blue, while red indicates two odd terms in a row. Shows A359804(n) mod 2 for n = 1..2^20.
Programs
-
Mathematica
nn = 432; c[] = False; q[] = 1; Set[{i, j}, {1, 2}]; c[1] = c[2] = True; q[2] = 2; u = 3; Reap[Do[ (k = q[#]; While[c[k #], k++]; k *= #; While[c[# q[#]], q[#]++]) &[(p = 2; While[Divisible[i j, p], p = NextPrime[p]]; p)]; If[OddQ[j k], Sow[n - 1]]; Set[{c[k], i, j}, {True, j, k}]; If[k == u, While[c[u], u++]], {n, 3, nn}] ][[-1, -1]]
Comments