cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363596 a(n) = (Product_{k=1..pi(n+1)} prime(k)^floor(n/(prime(k)-1) ) )/(n+1)!.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 12, 3, 10, 2, 12, 2, 420, 60, 24, 3, 90, 10, 420, 42, 660, 60, 360, 30, 3276, 252, 56, 4, 120, 8, 3696, 231, 3570, 210, 36, 2, 103740, 5460, 840, 42, 13860, 660, 27720, 1260, 19320, 840, 5040, 210, 198900, 7956, 10296, 396, 11880, 440, 6384, 228
Offset: 0

Views

Author

Michael De Vlieger, Aug 03 2023

Keywords

Comments

Motivated by Proposition 3.2, p. 10 of the Bedhouche-Farhi paper.
Observations regarding prime power decomposition of terms in a(0..20737):
For n > 300, most terms are in A361098 but not in A286708. A303606 is a subset of A286708, which is a subset of A361098, which in turn is a subset of A126706, numbers that are neither prime powers nor squarefree.
a(34) = 36 is the only term in A286708 (more specifically, in A303606).
a(35) = 2 is the last prime term.
a(29) = 8 is the only composite prime power.
a(190) = 221760 is the last term in A002182, but a(61) = a(102) = 720720 is the largest.
a(191) = 2310 is the last primorial term.
a(1055) = 2207550414530882190 is the last squarefree term. If there are further squarefree terms a(n), n is likely to belong to -1 (mod 24).
a(7055) = 1733187515208453605856007490304335826298500960 is the last term that is not in A361098. a(n) not in A361098 is likely to belong to -1 (mod 24).

Examples

			The table below relates b(n) = A091137(n) to a(n), with (n+1)!*a(n) = k!*m = b(n), where k! is the largest factorial that divides b(n).
 n  A067255(b(n)) (n+1)!*a(n)   k! * m
---------------------------------------
 0  0                1! * 1     1! * 1
 1  1                2! * 1     2! * 1
 2  2.1              3! * 2     3! * 2
 3  3.1              4! * 1     4! * 1
 4  4.2.1            5! * 6     6! * 1
 5  5.2.1            6! * 2     6! * 2
 6  6.3.1.1          7! * 12    7! * 12
 7  7.3.1.1          8! * 3     8! * 3
 8  8.4.2.1          9! * 10   10! * 1
 9  9.4.2.1         10! * 2    10! * 2
10  10.5.2.1.1      11! * 12   12! * 1
11  11.5.2.1.1      12! * 2    12! * 2
12  12.6.3.2.1.1    13! * 420  15! * 2
13  13.6.3.2.1.1    14! * 60   15! * 4
14  14.7.3.2.1.1    15! * 24   15! * 24
15  15.7.3.2.1.1    16! * 3    16! * 3
16  16.8.4.2.1.1.1  17! * 90   18! * 5
...
		

Crossrefs

Programs

  • Mathematica
    Table[j = 1; ( Times @@ Reap[While[Sow[#^Floor[n/(# - 1)]] &[Prime[j]] > 1, j++]][[-1, 1]] )/Factorial[n + 1], {n, 0, 60}]
  • Python
    from math import prod, factorial
    from sympy import sieve
    def A363596(n: int) -> int:
        numer = prod(p ** (n // (p - 1)) for p in sieve.primerange(2, n + 2))
        return numer // factorial(n + 1)
    print([A363596(n) for n in range(56)])  # Peter Luschny, Aug 17 2025

Formula

a(n) = A091137(n)/(n+1)!.