A363596 a(n) = (Product_{k=1..pi(n+1)} prime(k)^floor(n/(prime(k)-1) ) )/(n+1)!.
1, 1, 2, 1, 6, 2, 12, 3, 10, 2, 12, 2, 420, 60, 24, 3, 90, 10, 420, 42, 660, 60, 360, 30, 3276, 252, 56, 4, 120, 8, 3696, 231, 3570, 210, 36, 2, 103740, 5460, 840, 42, 13860, 660, 27720, 1260, 19320, 840, 5040, 210, 198900, 7956, 10296, 396, 11880, 440, 6384, 228
Offset: 0
Examples
The table below relates b(n) = A091137(n) to a(n), with (n+1)!*a(n) = k!*m = b(n), where k! is the largest factorial that divides b(n). n A067255(b(n)) (n+1)!*a(n) k! * m --------------------------------------- 0 0 1! * 1 1! * 1 1 1 2! * 1 2! * 1 2 2.1 3! * 2 3! * 2 3 3.1 4! * 1 4! * 1 4 4.2.1 5! * 6 6! * 1 5 5.2.1 6! * 2 6! * 2 6 6.3.1.1 7! * 12 7! * 12 7 7.3.1.1 8! * 3 8! * 3 8 8.4.2.1 9! * 10 10! * 1 9 9.4.2.1 10! * 2 10! * 2 10 10.5.2.1.1 11! * 12 12! * 1 11 11.5.2.1.1 12! * 2 12! * 2 12 12.6.3.2.1.1 13! * 420 15! * 2 13 13.6.3.2.1.1 14! * 60 15! * 4 14 14.7.3.2.1.1 15! * 24 15! * 24 15 15.7.3.2.1.1 16! * 3 16! * 3 16 16.8.4.2.1.1.1 17! * 90 18! * 5 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022. See p. 10.
- Michael De Vlieger, Log log scatterplot of a(n+1), n = 0..10^4.
- Michael De Vlieger, Plot p(k)^e(k) | a(n) at (x, y) = (n, k), n = 0..2^11, with a color function representing e(k), where black = 1, red = 2, and the largest exponent in the dataset shown in magenta. The bar at bottom shows the number 1 in black, primes in red, composite prime powers in gold, squarefree terms in green, and terms that are neither squarefree nor prime powers in blue.
Programs
-
Mathematica
Table[j = 1; ( Times @@ Reap[While[Sow[#^Floor[n/(# - 1)]] &[Prime[j]] > 1, j++]][[-1, 1]] )/Factorial[n + 1], {n, 0, 60}]
-
Python
from math import prod, factorial from sympy import sieve def A363596(n: int) -> int: numer = prod(p ** (n // (p - 1)) for p in sieve.primerange(2, n + 2)) return numer // factorial(n + 1) print([A363596(n) for n in range(56)]) # Peter Luschny, Aug 17 2025
Formula
a(n) = A091137(n)/(n+1)!.
Comments