cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363597 Union of prime powers and numbers that are not squarefree.

This page as a plain text file.
%I A363597 #15 Aug 03 2024 01:52:53
%S A363597 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,24,25,27,28,29,31,32,36,
%T A363597 37,40,41,43,44,45,47,48,49,50,52,53,54,56,59,60,61,63,64,67,68,71,72,
%U A363597 73,75,76,79,80,81,83,84,88,89,90,92,96,97,98,99,100,101,103
%N A363597 Union of prime powers and numbers that are not squarefree.
%C A363597 Numbers that are prime powers p^m, m >= 0, or products of multiple powers of distinct primes p^m where at least 1 prime power p^m is such that m > 1.
%C A363597 Let N = A000027. Analogous to the following sequences:
%C A363597 A002808 = N \ {{1} U A000040} = {1} U A024619 U A013929,
%C A363597 A303554 = N \ A126706 = A000961 U A005117, and
%C A363597 A085961 = N \ {{1} U A246547} = {A005117 U A024619} \ {1}.
%H A363597 Michael De Vlieger, <a href="/A363597/b363597.txt">Table of n, a(n) for n = 1..10000</a>
%F A363597 Complement of A120944, i.e., A000027 \ A120944.
%F A363597 Union of A000961 and A013929.
%F A363597 Union of {1}, A000040, A126706, and A246547.
%e A363597 1 is in the sequence because it is the empty product.
%e A363597 Prime p is in the sequence because it is not a composite squarefree number.
%e A363597 Numbers k that have prime power factors p^m | k where at least one prime power factor is such that m > 1 are in the sequence because they are not squarefree composites. Examples include 8, 9, 12, 20, and 36.
%t A363597 Select[Range[103], Nand[SquareFreeQ[#], CompositeQ[#]] &]
%o A363597 (PARI) isok(k) = (k==1) || isprimepower(k) || !issquarefree(k); \\ _Michel Marcus_, Aug 24 2023
%o A363597 (Python)
%o A363597 from math import isqrt
%o A363597 from sympy import mobius, primepi
%o A363597 def A363597(n):
%o A363597     if n==1: return 1
%o A363597     def f(x): return n-1+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x)
%o A363597     m, k = n-1, f(n-1)
%o A363597     while m != k:
%o A363597         m, k = k, f(k)
%o A363597     return m # _Chai Wah Wu_, Aug 02 2024
%Y A363597 Cf. A000040, A000961, A013929, A120944, A126706, A246547.
%K A363597 nonn,easy
%O A363597 1,2
%A A363597 _Michael De Vlieger_, Aug 15 2023