cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363599 Number of partitions of n into distinct parts where there are k^2-1 kinds of part k.

This page as a plain text file.
%I A363599 #14 Jun 11 2023 11:14:50
%S A363599 1,0,3,8,18,48,109,264,594,1360,2988,6552,14115,30048,63288,131800,
%T A363599 271953,555792,1126583,2264472,4518051,8948544,17603781,34405272,
%U A363599 66828247,129040704,247765665,473160696,898924929,1699331808,3197083220,5987288352,11162934948
%N A363599 Number of partitions of n into distinct parts where there are k^2-1 kinds of part k.
%F A363599 G.f.: Product_{k>=1} (1+x^k)^(k^2-1).
%F A363599 a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d) * d * (d^2-1) ) * a(n-k).
%o A363599 (PARI) my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, (1+x^k)^(k^2-1)))
%Y A363599 Cf. A027998, A052812, A255835, A363600.
%Y A363599 Cf. A363601.
%K A363599 nonn,easy
%O A363599 0,3
%A A363599 _Seiichi Manyama_, Jun 10 2023
%E A363599 Name suggested by _Joerg Arndt_, Jun 11 2023