cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363602 Number of partitions of n where there are k^2+1 kinds of parts k.

This page as a plain text file.
%I A363602 #18 Jun 11 2023 11:15:07
%S A363602 1,2,8,24,72,196,532,1368,3467,8520,20580,48664,113330,259588,586692,
%T A363602 1308304,2883427,6283192,13551344,28940688,61246052,128492516,
%U A363602 267388008,552126648,1131750735,2303690862,4658080756,9358912416,18689701580,37106245300,73259451208
%N A363602 Number of partitions of n where there are k^2+1 kinds of parts k.
%F A363602 G.f.: 1/Product_{k>=1} (1-x^k)^(k^2+1).
%F A363602 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A092345(k) * a(n-k).
%o A363602 (PARI) my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(k^2+1)))
%Y A363602 Cf. A023871, A092345, A363601.
%K A363602 nonn,easy
%O A363602 0,2
%A A363602 _Seiichi Manyama_, Jun 10 2023
%E A363602 Name suggested by _Joerg Arndt_, Jun 11 2023