This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363619 #14 Aug 16 2023 10:59:06 %S A363619 0,1,2,-1,3,-3,4,2,-2,-5,5,5,6,-7,-4,-2,7,3,8,8,-6,-9,9,-6,-3,-11,4, %T A363619 11,10,6,11,3,-8,-13,-5,-3,12,-15,-10,-10,13,9,14,14,7,-17,15,8,-4,4, %U A363619 -12,17,16,-5,-7,-14,-14,-19,17,-7,18,-21,10,-3,-9,12,19,20 %N A363619 Weighted alternating sum of the multiset of prime indices of n. %C A363619 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A363619 We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) i * y_i. %e A363619 The prime indices of 300 are {1,1,2,3,3}, with weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8, so a(300) = 8. %t A363619 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A363619 altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}]; %t A363619 Table[altwtsum[prix[n]],{n,100}] %Y A363619 The non-alternating version is A304818, reverse A318283. %Y A363619 The unweighted version is A316524, reverse A344616. %Y A363619 The reverse version is A363620. %Y A363619 The triangle for this rank statistic is A363622, reverse A363623. %Y A363619 For partitions instead of multisets we have A363624, reverse A363625. %Y A363619 A055396 gives minimum prime index, maximum A061395. %Y A363619 A112798 lists prime indices, length A001222, sum A056239. %Y A363619 A264034 counts partitions by weighted sum, reverse A358194. %Y A363619 A320387 counts multisets by weighted sum, zero-based A359678. %Y A363619 A359677 gives zero-based weighted sum of prime indices, reverse A359674. %Y A363619 Cf. A000009, A000720, A001221, A046660, A053632, A106529, A124010, A181819, A261079, A363532, A363621, A363626. %K A363619 sign %O A363619 1,3 %A A363619 _Gus Wiseman_, Jun 12 2023