cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363619 Weighted alternating sum of the multiset of prime indices of n.

This page as a plain text file.
%I A363619 #14 Aug 16 2023 10:59:06
%S A363619 0,1,2,-1,3,-3,4,2,-2,-5,5,5,6,-7,-4,-2,7,3,8,8,-6,-9,9,-6,-3,-11,4,
%T A363619 11,10,6,11,3,-8,-13,-5,-3,12,-15,-10,-10,13,9,14,14,7,-17,15,8,-4,4,
%U A363619 -12,17,16,-5,-7,-14,-14,-19,17,-7,18,-21,10,-3,-9,12,19,20
%N A363619 Weighted alternating sum of the multiset of prime indices of n.
%C A363619 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A363619 We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) i * y_i.
%e A363619 The prime indices of 300 are {1,1,2,3,3}, with weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8, so a(300) = 8.
%t A363619 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A363619 altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
%t A363619 Table[altwtsum[prix[n]],{n,100}]
%Y A363619 The non-alternating version is A304818, reverse A318283.
%Y A363619 The unweighted version is A316524, reverse A344616.
%Y A363619 The reverse version is A363620.
%Y A363619 The triangle for this rank statistic is A363622, reverse A363623.
%Y A363619 For partitions instead of multisets we have A363624, reverse A363625.
%Y A363619 A055396 gives minimum prime index, maximum A061395.
%Y A363619 A112798 lists prime indices, length A001222, sum A056239.
%Y A363619 A264034 counts partitions by weighted sum, reverse A358194.
%Y A363619 A320387 counts multisets by weighted sum, zero-based A359678.
%Y A363619 A359677 gives zero-based weighted sum of prime indices, reverse A359674.
%Y A363619 Cf. A000009, A000720, A001221, A046660, A053632, A106529, A124010, A181819, A261079, A363532, A363621, A363626.
%K A363619 sign
%O A363619 1,3
%A A363619 _Gus Wiseman_, Jun 12 2023