A363621 Positive integers whose prime indices have reverse-weighted alternating sum 0.
1, 6, 21, 40, 50, 54, 65, 132, 133, 154, 210, 224, 319, 340, 351, 360, 374, 392, 450, 481, 486, 507, 546, 598, 624, 644, 731, 825, 855, 969, 1007, 1029, 1054, 1144, 1210, 1254, 1320, 1364, 1386, 1403, 1408, 1520, 1558, 1653, 1750, 1785, 1827, 1836, 1890, 1960
Offset: 1
Keywords
Examples
The prime indices of 360 are {1,1,1,2,2,3}, with reverse-weighted alternating sum 1*3 - 2*2 + 3*2 - 4*1 + 5*1 - 6*1 = 0, so 360 is in the sequence. The terms together with their prime indices begin: 1: {} 6: {1,2} 21: {2,4} 40: {1,1,1,3} 50: {1,3,3} 54: {1,2,2,2} 65: {3,6} 132: {1,1,2,5} 133: {4,8} 154: {1,4,5} 210: {1,2,3,4} 224: {1,1,1,1,1,4} 319: {5,10} 340: {1,1,3,7} 351: {2,2,2,6} 360: {1,1,1,2,2,3}
Crossrefs
The unweighted version is A000290.
Partitions of this type are counted by A363532.
Compositions of this type are counted by A363626.
A053632 counts compositions by weighted sum.
A304818 gives weighted sum of prime indices.
A318283 gives weighted sum of reversed prime indices.
A320387 counts multisets by weighted sum.
A344616 gives reverse-alternating sum of prime indices.
A363623 counts partitions by reverse-weighted alternating sum.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}]; Select[Range[1000],revaltwtsum[prix[#]]==0&]
Comments