This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363622 #7 Jun 15 2023 20:06:52 %S A363622 1,1,1,0,0,1,1,0,1,1,2,0,0,1,0,1,1,2,0,1,1,1,1,1,3,0,0,2,0,1,1,2,1,1, %T A363622 3,0,2,2,1,1,2,2,1,1,5,0,0,3,0,2,2,2,1,3,2,1,1,5,0,3,3,2,2,3,2,2,4,2, %U A363622 1,1,7,0,0,5,0,3,3,4,2,4,2,4,4,2,1,1 %N A363622 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with weighted alternating sum k (leading and trailing 0's omitted). %C A363622 We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) i * y_i. For example: %C A363622 - (3,3,2,1,1) has weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 = 4. %C A363622 - (1,2,2,3) has weighted alternating sum 1*1 - 2*2 + 3*2 - 4*3 = -9. %e A363622 Triangle begins: %e A363622 1 %e A363622 1 %e A363622 1 0 0 1 %e A363622 1 0 1 1 %e A363622 2 0 0 1 0 1 1 %e A363622 2 0 1 1 1 1 1 %e A363622 3 0 0 2 0 1 1 2 1 1 %e A363622 3 0 2 2 1 1 2 2 1 1 %e A363622 5 0 0 3 0 2 2 2 1 3 2 1 1 %e A363622 5 0 3 3 2 2 3 2 2 4 2 1 1 %e A363622 7 0 0 5 0 3 3 4 2 4 2 4 4 2 1 1 %e A363622 7 0 5 5 3 3 5 4 3 5 3 5 4 2 1 1 %e A363622 Row n = 6 counts the following partitions: %e A363622 k=-3 k=0 k=2 k=3 k=4 k=5 k=6 %e A363622 ----------------------------------------------------------- %e A363622 (33) . . (42) . (321) (51) (222) (411) (6) %e A363622 (2211) (3111) (21111) %e A363622 (111111) %t A363622 altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}]; %t A363622 Table[Length[Select[IntegerPartitions[n],altwtsum[#]==k&]],{n,0,15},{k,Min[altwtsum/@IntegerPartitions[n]], Max[altwtsum/@IntegerPartitions[n]]}] %Y A363622 Row sums are A000041. %Y A363622 The unweighted version is A103919 with leading zeros removed. %Y A363622 Row-lengths appear to be A168233. %Y A363622 Central column T(n,0) is A363532, ranks A363621. %Y A363622 The corresponding rank statistic is A363619, reverse A363620. %Y A363622 The reverse version is A363623. %Y A363622 A053632 counts compositions by weighted sum. %Y A363622 A264034 counts partitions by weighted sum, reverse A358194. %Y A363622 A316524 gives alternating sum of prime indices, reverse A344616. %Y A363622 A363624 gives weighted alternating sum of Heinz partition, reverse A363625. %Y A363622 Cf. A008284, A067538, A222855, A222970, A318283, A320387, A360672, A360675, A362559, A363626. %K A363622 nonn,tabf %O A363622 0,11 %A A363622 _Gus Wiseman_, Jun 15 2023