cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363622 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with weighted alternating sum k (leading and trailing 0's omitted).

This page as a plain text file.
%I A363622 #7 Jun 15 2023 20:06:52
%S A363622 1,1,1,0,0,1,1,0,1,1,2,0,0,1,0,1,1,2,0,1,1,1,1,1,3,0,0,2,0,1,1,2,1,1,
%T A363622 3,0,2,2,1,1,2,2,1,1,5,0,0,3,0,2,2,2,1,3,2,1,1,5,0,3,3,2,2,3,2,2,4,2,
%U A363622 1,1,7,0,0,5,0,3,3,4,2,4,2,4,4,2,1,1
%N A363622 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with weighted alternating sum k (leading and trailing 0's omitted).
%C A363622 We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) i * y_i. For example:
%C A363622 - (3,3,2,1,1) has weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 = 4.
%C A363622 - (1,2,2,3) has weighted alternating sum  1*1 - 2*2 + 3*2 - 4*3 = -9.
%e A363622 Triangle begins:
%e A363622   1
%e A363622   1
%e A363622   1  0  0  1
%e A363622   1  0  1  1
%e A363622   2  0  0  1  0  1  1
%e A363622   2  0  1  1  1  1  1
%e A363622   3  0  0  2  0  1  1  2  1  1
%e A363622   3  0  2  2  1  1  2  2  1  1
%e A363622   5  0  0  3  0  2  2  2  1  3  2  1  1
%e A363622   5  0  3  3  2  2  3  2  2  4  2  1  1
%e A363622   7  0  0  5  0  3  3  4  2  4  2  4  4  2  1  1
%e A363622   7  0  5  5  3  3  5  4  3  5  3  5  4  2  1  1
%e A363622 Row n = 6 counts the following partitions:
%e A363622   k=-3            k=0        k=2    k=3   k=4      k=5    k=6
%e A363622   -----------------------------------------------------------
%e A363622   (33)      .  .  (42)    .  (321)  (51)  (222)    (411)  (6)
%e A363622   (2211)          (3111)                  (21111)
%e A363622   (111111)
%t A363622 altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
%t A363622 Table[Length[Select[IntegerPartitions[n],altwtsum[#]==k&]],{n,0,15},{k,Min[altwtsum/@IntegerPartitions[n]], Max[altwtsum/@IntegerPartitions[n]]}]
%Y A363622 Row sums are A000041.
%Y A363622 The unweighted version is A103919 with leading zeros removed.
%Y A363622 Row-lengths appear to be A168233.
%Y A363622 Central column T(n,0) is A363532, ranks A363621.
%Y A363622 The corresponding rank statistic is A363619, reverse A363620.
%Y A363622 The reverse version is A363623.
%Y A363622 A053632 counts compositions by weighted sum.
%Y A363622 A264034 counts partitions by weighted sum, reverse A358194.
%Y A363622 A316524 gives alternating sum of prime indices, reverse A344616.
%Y A363622 A363624 gives weighted alternating sum of Heinz partition, reverse A363625.
%Y A363622 Cf. A008284, A067538, A222855, A222970, A318283, A320387, A360672, A360675, A362559, A363626.
%K A363622 nonn,tabf
%O A363622 0,11
%A A363622 _Gus Wiseman_, Jun 15 2023