cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363623 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-weighted alternating sum k (leading and trailing 0's omitted).

This page as a plain text file.
%I A363623 #4 Jun 15 2023 20:06:48
%S A363623 1,1,1,1,1,2,2,0,1,2,2,1,1,1,1,1,3,1,0,3,0,1,1,1,1,3,2,0,3,1,2,0,1,0,
%T A363623 1,2,5,1,0,3,1,2,2,2,1,1,0,1,0,1,2,5,3,0,4,2,2,0,3,2,1,3,0,0,1,0,1,1,
%U A363623 1,1,7,2,0,4,1,5,2,3,1,3,0,2,3,1,2,1,0,0,1,0,1,1,1,1
%N A363623 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-weighted alternating sum k (leading and trailing 0's omitted).
%C A363623 We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}. For example:
%C A363623 - (3,3,2,1,1) has reverse-weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8.
%C A363623 - (1,2,2,3) has reverse-weighted alternating sum -1*3 + 2*2 - 3*2 + 4*1 = -1.
%e A363623 Triangle begins:
%e A363623   1
%e A363623   1
%e A363623   1  1
%e A363623   1  2
%e A363623   2  0  1  2
%e A363623   2  1  1  1  1  1
%e A363623   3  1  0  3  0  1  1  1  1
%e A363623   3  2  0  3  1  2  0  1  0  1  2
%e A363623   5  1  0  3  1  2  2  2  1  1  0  1  0  1  2
%e A363623   5  3  0  4  2  2  0  3  2  1  3  0  0  1  0  1  1  1  1
%e A363623 Row n = 6 counts the following partitions:
%e A363623   k=3       k=4       k=6       k=8      k=9   k=10    k=11
%e A363623 --------------------------------------------------------------
%e A363623   (33)      (222)  .  (6)    .  (21111)  (51)  (3111)  (411)
%e A363623   (2211)              (42)
%e A363623   (111111)            (321)
%t A363623 revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
%t A363623 Table[Length[Select[IntegerPartitions[n],revaltwtsum[#]==k&]],{n,0,15},{k,Floor[(n+1)/2],Ceiling[n*(n+1)/4]}]
%Y A363623 Row sums are A000041.
%Y A363623 Column k = floor((n+1)/2) is A119620.
%Y A363623 The unweighted version is A344612 aerated, reverse A103919.
%Y A363623 The corresponding rank statistic is A363620, reverse A363619.
%Y A363623 The reverse version is A363622.
%Y A363623 A053632 counts compositions by weighted sum.
%Y A363623 A264034 counts partitions by weighted sum, reverse A358194.
%Y A363623 A316524 gives alternating sum of prime indices, reverse A344616.
%Y A363623 A363624 gives weighted alternating sum of Heinz partition, reverse A363625.
%Y A363623 Cf. A008284, A067538, A222855, A222970, A318283, A320387, A360672, A360675, A362559, A363532, A363621, A363626.
%K A363623 nonn,tabf
%O A363623 0,6
%A A363623 _Gus Wiseman_, Jun 15 2023