This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363623 #4 Jun 15 2023 20:06:48 %S A363623 1,1,1,1,1,2,2,0,1,2,2,1,1,1,1,1,3,1,0,3,0,1,1,1,1,3,2,0,3,1,2,0,1,0, %T A363623 1,2,5,1,0,3,1,2,2,2,1,1,0,1,0,1,2,5,3,0,4,2,2,0,3,2,1,3,0,0,1,0,1,1, %U A363623 1,1,7,2,0,4,1,5,2,3,1,3,0,2,3,1,2,1,0,0,1,0,1,1,1,1 %N A363623 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-weighted alternating sum k (leading and trailing 0's omitted). %C A363623 We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}. For example: %C A363623 - (3,3,2,1,1) has reverse-weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8. %C A363623 - (1,2,2,3) has reverse-weighted alternating sum -1*3 + 2*2 - 3*2 + 4*1 = -1. %e A363623 Triangle begins: %e A363623 1 %e A363623 1 %e A363623 1 1 %e A363623 1 2 %e A363623 2 0 1 2 %e A363623 2 1 1 1 1 1 %e A363623 3 1 0 3 0 1 1 1 1 %e A363623 3 2 0 3 1 2 0 1 0 1 2 %e A363623 5 1 0 3 1 2 2 2 1 1 0 1 0 1 2 %e A363623 5 3 0 4 2 2 0 3 2 1 3 0 0 1 0 1 1 1 1 %e A363623 Row n = 6 counts the following partitions: %e A363623 k=3 k=4 k=6 k=8 k=9 k=10 k=11 %e A363623 -------------------------------------------------------------- %e A363623 (33) (222) . (6) . (21111) (51) (3111) (411) %e A363623 (2211) (42) %e A363623 (111111) (321) %t A363623 revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}]; %t A363623 Table[Length[Select[IntegerPartitions[n],revaltwtsum[#]==k&]],{n,0,15},{k,Floor[(n+1)/2],Ceiling[n*(n+1)/4]}] %Y A363623 Row sums are A000041. %Y A363623 Column k = floor((n+1)/2) is A119620. %Y A363623 The unweighted version is A344612 aerated, reverse A103919. %Y A363623 The corresponding rank statistic is A363620, reverse A363619. %Y A363623 The reverse version is A363622. %Y A363623 A053632 counts compositions by weighted sum. %Y A363623 A264034 counts partitions by weighted sum, reverse A358194. %Y A363623 A316524 gives alternating sum of prime indices, reverse A344616. %Y A363623 A363624 gives weighted alternating sum of Heinz partition, reverse A363625. %Y A363623 Cf. A008284, A067538, A222855, A222970, A318283, A320387, A360672, A360675, A362559, A363532, A363621, A363626. %K A363623 nonn,tabf %O A363623 0,6 %A A363623 _Gus Wiseman_, Jun 15 2023