A363625 Reverse-weighted alternating sum of the integer partition with Heinz number n.
0, 1, 2, 1, 3, 3, 4, 2, 2, 5, 5, 5, 6, 7, 4, 2, 7, 3, 8, 8, 6, 9, 9, 6, 3, 11, 4, 11, 10, 6, 11, 3, 8, 13, 5, 3, 12, 15, 10, 10, 13, 9, 14, 14, 7, 17, 15, 8, 4, 4, 12, 17, 16, 5, 7, 14, 14, 19, 17, 7, 18, 21, 10, 3, 9, 12, 19, 20, 16, 7, 20, 4, 21, 23, 5, 23
Offset: 1
Keywords
Examples
The partition with Heinz number 600 is (3,3,2,1,1,1), so a(600) = -1*1 + 2*1 - 3*1 + 4*2 - 5*3 + 6*3 = 9.
Crossrefs
For multisets instead of partitions we have A363620.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}]; Table[revaltwtsum[Reverse[prix[n]]],{n,100}]
Comments