This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363626 #16 Sep 05 2023 15:21:20 %S A363626 1,0,0,1,1,0,2,5,7,8,14,38,64,87,174,373,649,1069,2051,4091,7453, %T A363626 13276,25260,48990,91378,168890,321661,618323,1169126,2203649,4211163, %U A363626 8085240,15421171,29390131,56382040,108443047,208077560,399310778 %N A363626 Number of integer compositions of n with weighted alternating sum 0. %C A363626 We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i. %H A363626 Alois P. Heinz, <a href="/A363626/b363626.txt">Table of n, a(n) for n = 0..150</a> (first 51 terms from Max Alekseyev) %e A363626 The a(3) = 1 through a(10) = 14 compositions: %e A363626 (21) (121) . (42) (331) (242) (63) (541) %e A363626 (3111) (1132) (1331) (153) (2143) %e A363626 (2221) (11132) (4122) (3232) %e A363626 (21121) (12221) (5211) (4321) %e A363626 (112111) (23111) (13122) (15112) %e A363626 (121121) (14211) (31231) %e A363626 (1112111) (411111) (42121) %e A363626 (1311111) (114112) %e A363626 (212122) %e A363626 (213211) %e A363626 (311221) %e A363626 (322111) %e A363626 (3111121) %e A363626 (21211111) %t A363626 altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}]; %t A363626 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],altwtsum[#]==0&]],{n,0,10}] %Y A363626 The unweighted version is A138364, ranks A344619. %Y A363626 The version for partitions is A363532, ranks A363621. %Y A363626 A000041 counts integer partitions. %Y A363626 A264034 counts partitions by weighted sum, reverse A358194. %Y A363626 A304818 gives weighted sum of prime indices, reverse A318283. %Y A363626 A316524 gives alternating sum of prime indices, reverse A344616. %Y A363626 A363619 gives weighted alternating sum of prime indices, reverse A363620. %Y A363626 A363624 gives weighted alternating sum of Heinz partition, reverse A363625. %Y A363626 Cf. A008284, A053632, A106529, A261079, A320387, A360672, A360675, A362559, A363622, A363623. %K A363626 nonn %O A363626 0,7 %A A363626 _Gus Wiseman_, Jun 16 2023 %E A363626 Terms a(22) onward from _Max Alekseyev_, Sep 05 2023