cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363628 Expansion of Sum_{k>0} (1/(1-x^k)^3 - 1).

This page as a plain text file.
%I A363628 #13 Jul 05 2023 01:45:22
%S A363628 3,9,13,24,24,47,39,69,68,96,81,153,108,165,170,222,174,292,213,342,
%T A363628 302,363,303,523,375,492,474,615,468,766,531,783,686,810,726,1101,744,
%U A363628 999,938,1248,906,1402,993,1413,1306,1437,1179,1901,1314,1773,1562,1938,1488,2238,1698
%N A363628 Expansion of Sum_{k>0} (1/(1-x^k)^3 - 1).
%F A363628 G.f.: Sum_{k>0} binomial(k+2,2) * x^k/(1 - x^k).
%F A363628 a(n) = Sum_{d|n} binomial(d+2,2).
%t A363628 a[n_] := DivisorSum[n, Binomial[# + 2, 2] &]; Array[a, 50] (* _Amiram Eldar_, Jul 05 2023 *)
%o A363628 (PARI) a(n) = sumdiv(n, d, binomial(d+2, 2));
%Y A363628 Cf. A007503, A116963.
%Y A363628 Cf. A007437, A069153, A363610.
%K A363628 nonn,easy
%O A363628 1,1
%A A363628 _Seiichi Manyama_, Jun 12 2023