This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363636 #35 Jul 11 2024 10:47:07 %S A363636 0,3,7,13,17,18,21,31,38,43,47,57,68,73,91,99,111,117,123,132,133,157, %T A363636 183,211,241,242,253,255,268,273,293,302,307,313,322,327,343,381,413, %U A363636 421,438,443,463,487,507,515,553,557,577,593,601,651,693,697,703,707 %N A363636 Indices of numbers of the form k^2+1, k >= 0, that can be written as a product of smaller numbers of that same form. %C A363636 For the corresponding sequence for numbers of the form k^3+1 instead of k^2+1, the only terms known to me are 0 and 26, with 26^3+1 = (2^3+1)^2*(6^3+1). %H A363636 David Trimas, <a href="/A363636/b363636.txt">Table of n, a(n) for n = 1..2260</a> %e A363636 0 is a term because 0^2+1 = 1 equals the empty product. %e A363636 3 is a term because 3^2+1 = 10 = 2*5 = (1^2+1)*(2^2+1). %e A363636 38 is a term because 38^2+1 = 1445 = 5*17*17 = (2^2+1)*(4^2+1)^2. (This is the first term that requires more than two factors.) %t A363636 g[lst_, p_] := %t A363636 Module[{t, i, j}, %t A363636 Union[Flatten[Table[t = lst[[i]]; t[[j]] = p*t[[j]]; %t A363636 Sort[t], {i, Length[lst]}, {j, Length[lst[[i]]]}], 1], %t A363636 Table[Sort[Append[lst[[i]], p]], {i, Length[lst]}]]]; %t A363636 multPartition[n_] := %t A363636 Module[{i, j, p, e, lst = {{}}}, {p, e} = %t A363636 Transpose[FactorInteger[n]]; %t A363636 Do[lst = g[lst, p[[i]]], {i, Length[p]}, {j, e[[i]]}]; lst]; %t A363636 output = Join[{0}, Flatten[Position[Table[ %t A363636 test = Sqrt[multPartition[n^2 + 1][[2 ;; All]] - 1]; %t A363636 Count[AllTrue[#, IntegerQ] & /@ test, True] > 0 %t A363636 , {n, 707}], True]]] %t A363636 (* _David Trimas_, Jul 23 2023 *) %Y A363636 Sequences that list those terms (or their indices or some other key) of a given sequence that are products of smaller terms of the same sequence (in other words, the nonprimitive terms of the multiplicative closure of the sequence): %Y A363636 A018252 (A000027), %Y A363636 A034878 (A000142), %Y A363636 A068143 (A000217), %Y A363636 A363492 (A000041), %Y A363636 A363634 (A000959), %Y A363636 A363635 (A003309), %Y A363636 this sequence (A002522), %Y A363636 A363637 (A005563), %Y A363636 A363638 (A008864), %Y A363636 A363750 (A006093), %Y A363636 A364151 (A000292), %Y A363636 A374372 (A000326), %Y A363636 A374373 (A000384), %Y A363636 A374374 (A002378), %Y A363636 A374375 (A007531), %Y A363636 A374500 (A000330), %Y A363636 A374501 (A002411), %Y A363636 A374502 (A002412). %K A363636 nonn %O A363636 1,2 %A A363636 _Pontus von Brömssen_, Jun 19 2023