cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363668 a(n) = Sum_{d|n} (n/d)^d * binomial(d+n-1,d).

This page as a plain text file.
%I A363668 #12 Jul 12 2023 01:01:56
%S A363668 1,7,19,91,151,1135,1765,12355,28846,157917,352837,2280955,5200469,
%T A363668 29986201,80469589,427061795,1166803399,6211188028,17672632261,
%U A363668 89483074521,271071666724,1316291647997,4116715364329,19595444140771,63205674328876,292318539358879
%N A363668 a(n) = Sum_{d|n} (n/d)^d * binomial(d+n-1,d).
%F A363668 a(n) = [x^n] Sum_{k>0} (1/(1 - k*x^k)^n - 1).
%t A363668 a[n_] := DivisorSum[n, (n/#)^# * Binomial[# + n - 1, #] &]; Array[a, 30] (* _Amiram Eldar_, Jul 12 2023 *)
%o A363668 (PARI) a(n) = sumdiv(n, d, (n/d)^d*binomial(d+n-1, d));
%Y A363668 Cf. A055225, A362683, A363639, A363640.
%Y A363668 Cf. A343549, A363669.
%K A363668 nonn
%O A363668 1,2
%A A363668 _Seiichi Manyama_, Jun 14 2023