cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363669 a(n) = Sum_{d|n} (n/d)^n * binomial(d+n-1,d).

This page as a plain text file.
%I A363669 #11 Jul 12 2023 01:01:53
%S A363669 1,11,91,1219,15751,299291,5766517,136667939,3490056406,100539251801,
%T A363669 3138428729437,107169878769043,3937376390899589,155639310270607349,
%U A363669 6568429274592664981,295186202455912472867,14063084452068891794119,708261127356256620907496
%N A363669 a(n) = Sum_{d|n} (n/d)^n * binomial(d+n-1,d).
%F A363669 a(n) = [x^n] Sum_{k>0} (1/(1 - (k*x)^k)^n - 1).
%t A363669 a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + n - 1, #] &]; Array[a, 20] (* _Amiram Eldar_, Jul 12 2023 *)
%o A363669 (PARI) a(n) = sumdiv(n, d, (n/d)^n*binomial(d+n-1, d));
%Y A363669 Cf. A363646, A363647, A363648.
%Y A363669 Cf. A343549, A363668.
%K A363669 nonn
%O A363669 1,2
%A A363669 _Seiichi Manyama_, Jun 14 2023