cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363672 Triangular array: row n lists the primes indexed by the array in A363671.

This page as a plain text file.
%I A363672 #10 Jul 23 2023 22:27:28
%S A363672 2,2,3,3,5,7,2,5,7,11,3,5,11,13,17,2,5,7,13,17,19,3,5,11,13,19,23,29,
%T A363672 5,11,13,19,23,31,37,41,2,7,13,17,23,29,37,41,43,5,7,17,23,29,37,41,
%U A363672 47,53,59,3,11,13,23,31,37,43,47,59,61,67,2,5,13,17,29
%N A363672 Triangular array: row n lists the primes indexed by the array in A363671.
%C A363672 Row n lists primes of the form prime(n+2)-2*k where A028334(n) <= k <= A067076(n).
%e A363672 First 10 rows:
%e A363672   2
%e A363672   2    4
%e A363672   3    5    7
%e A363672   2    5    7   11
%e A363672   3    5   11   13   17
%e A363672   2    5    7   13   17   19
%e A363672   3    5   11   13   19   23   29
%e A363672   5   11   13   19   23   31   37   41
%e A363672   2    7   13   17   23   29   37   41   43
%e A363672   5    7   17   23   29   37   41   47   53   59
%e A363672 For row 6, we have prime(8) = 19, and prime 19-2*k is prime for these k: 1, 3, 4, 6, 7, 8. The primes with indexes 1,3,4,6,7,8 are 2,5,7,13,17,19.
%t A363672 m[p_] := Select[Range[500], PrimeQ[p - 2 #] && p > 2 # &]
%t A363672 t = Prime[Table[m[Prime[n]], {n, 3, 15}]]
%t A363672 TableForm[t]  (* this sequence as an array *)
%t A363672 Flatten[t]    (* this sequence *)
%Y A363672 Cf. A000040, A087478 (column 1), A363671.
%K A363672 nonn,tabl
%O A363672 1,1
%A A363672 _Clark Kimberling_, Jun 15 2023