cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363673 a(n) is the least prime factor (> 3) in the factorization of 2^(2*prime(n))-1.

Original entry on oeis.org

5, 7, 11, 43, 23, 2731, 43691, 174763, 47, 59, 715827883, 223, 83, 431, 283, 107, 2833, 768614336404564651, 7327657, 228479, 439, 2687, 167, 179, 971, 7432339208719, 2550183799, 643, 104124649, 227, 56713727820156410577229101238628035243, 263, 1097, 4506937, 1193, 18121, 15073, 150287
Offset: 1

Views

Author

Alain Rocchelli, Jun 14 2023

Keywords

Comments

2*prime(n)+1 is prime iff a(n) = 2*prime(n)+1.

Examples

			For n=2, prime(2)=3 and a(2)=7 since 2^(2*3)-1 = 63 = 3^2*7.
For n=4, prime(4)=7 and a(4)=43 since 2^(2*7)-1 = 16383 = 3*43*127.
For n=5, prime(5)=11 and a(5)=23 since 2^(2*11)-1 = 4194303 = 3*23*89*683.
		

Crossrefs

Cf. A152099.

Programs

  • PARI
    forprime(p=2, 163, Ap=factor(2^(2*p)-1)[2,1]; print1(Ap,", "))
    
  • Python
    from sympy import prime, primefactors
    def A363673(n):
        m = (1<<(prime(n)<<1))-1
        a, b = divmod(m,3)
        while not b:
            m = a
            a, b = divmod(m,3)
        return min(primefactors(m)) # Chai Wah Wu, Jun 26 2023