A363673 a(n) is the least prime factor (> 3) in the factorization of 2^(2*prime(n))-1.
5, 7, 11, 43, 23, 2731, 43691, 174763, 47, 59, 715827883, 223, 83, 431, 283, 107, 2833, 768614336404564651, 7327657, 228479, 439, 2687, 167, 179, 971, 7432339208719, 2550183799, 643, 104124649, 227, 56713727820156410577229101238628035243, 263, 1097, 4506937, 1193, 18121, 15073, 150287
Offset: 1
Keywords
Examples
For n=2, prime(2)=3 and a(2)=7 since 2^(2*3)-1 = 63 = 3^2*7. For n=4, prime(4)=7 and a(4)=43 since 2^(2*7)-1 = 16383 = 3*43*127. For n=5, prime(5)=11 and a(5)=23 since 2^(2*11)-1 = 4194303 = 3*23*89*683.
Crossrefs
Cf. A152099.
Programs
-
PARI
forprime(p=2, 163, Ap=factor(2^(2*p)-1)[2,1]; print1(Ap,", "))
-
Python
from sympy import prime, primefactors def A363673(n): m = (1<<(prime(n)<<1))-1 a, b = divmod(m,3) while not b: m = a a, b = divmod(m,3) return min(primefactors(m)) # Chai Wah Wu, Jun 26 2023
Comments