This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363694 #19 Aug 06 2023 01:52:48 %S A363694 0,0,0,0,1,1,2,3,4,5,5,6,7,8,9,11,11,13,14,16,17,19,19,22,23,25,25,27, %T A363694 27,30,31,33,34,37,37,41,41,42,43,46,46,50,51,54,55,58,58,63,64,68,68, %U A363694 71,71,76,77,80,80,83,83,89,90,92,93,98,98,104,104,106,107,112,112,118,119 %N A363694 Number of edges in the prime (Gruenberg-Kegel) graph of the symmetric group, S_n, on n elements. %C A363694 For integer n, this is the number of distinct pairs of primes p,q such that p+q <= n. %C A363694 It appears that n = 30,31 are the only cases of a(n) = n. %H A363694 J. S. Williams, <a href="https://doi.org/10.1016/0021-8693(81)90218-0">Prime graph components of finite groups</a>, Journal of Algebra, 69(1981), 487-513. %e A363694 For n = 5, the primes dividing the order of S_5 are 2,3,5. There is an element of order 6 in S_5, so there is an edge between 2 and 3, and there are no other edges. So a(5) = 1. %o A363694 (Python) # Inefficient but works %o A363694 import sympy %o A363694 m = 100 %o A363694 dict1 = {} %o A363694 for n in range(1,m): %o A363694 edges = 0 %o A363694 for i in sympy.primerange(n): %o A363694 for j in sympy.primerange(n): %o A363694 if i != j and i + j <= n: %o A363694 edges += 1 %o A363694 dict1[n] = int(edges/2) %o A363694 print(dict1.values()) %o A363694 (Python) %o A363694 from sympy import primepi, nextprime %o A363694 def A363694(n): %o A363694 c, m, p = 0, 1, 2 %o A363694 while p<<1 < n: %o A363694 c += primepi(n-p)-m %o A363694 p = nextprime(p) %o A363694 m += 1 %o A363694 return c # _Chai Wah Wu_, Aug 05 2023 %K A363694 nonn %O A363694 1,7 %A A363694 _Lixin Zheng_, Jun 15 2023