cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363695 Expansion of Sum_{k>0} (1/(1-x^k)^5 - 1).

This page as a plain text file.
%I A363695 #19 Jul 05 2023 01:45:16
%S A363695 5,20,40,90,131,265,335,585,755,1147,1370,2155,2385,3410,4042,5430,
%T A363695 5990,8295,8860,11843,13020,16335,17555,23125,23882,29805,32220,39440,
%U A363695 40925,51644,52365,64335,67450,79820,82712,101575,101275,120805,125830,148089,149000,179490
%N A363695 Expansion of Sum_{k>0} (1/(1-x^k)^5 - 1).
%H A363695 Seiichi Manyama, <a href="/A363695/b363695.txt">Table of n, a(n) for n = 1..10000</a>
%F A363695 G.f.: Sum_{k>0} binomial(k+4,4) * x^k/(1 - x^k).
%F A363695 a(n) = Sum_{d|n} binomial(d+4,4).
%t A363695 a[n_] := DivisorSum[n, Binomial[# + 4, 4] &]; Array[a, 40] (* _Amiram Eldar_, Jul 05 2023 *)
%o A363695 (PARI) a(n) = sumdiv(n, d, binomial(d+4, 4));
%Y A363695 Cf. A007503, A116963, A363628, A363696.
%Y A363695 Cf. A073570, A363605, A363608.
%K A363695 nonn,easy
%O A363695 1,1
%A A363695 _Seiichi Manyama_, Jun 16 2023