cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363696 Expansion of Sum_{k>0} (1/(1-x^k)^6 - 1).

This page as a plain text file.
%I A363696 #18 Jul 05 2023 01:45:13
%S A363696 6,27,62,153,258,545,798,1440,2064,3282,4374,6859,8574,12447,15818,
%T A363696 21789,26340,36196,42510,56538,66634,85125,98286,126901,142764,178506,
%U A363696 203440,249909,278262,343936,376998,457686,506372,602118,659058,791908,850674,1005129,1094638
%N A363696 Expansion of Sum_{k>0} (1/(1-x^k)^6 - 1).
%H A363696 Seiichi Manyama, <a href="/A363696/b363696.txt">Table of n, a(n) for n = 1..10000</a>
%F A363696 G.f.: Sum_{k>0} binomial(k+5,5) * x^k/(1 - x^k).
%F A363696 a(n) = Sum_{d|n} binomial(d+5,5).
%t A363696 a[n_] := DivisorSum[n, Binomial[# + 5, 5] &]; Array[a, 40] (* _Amiram Eldar_, Jul 05 2023 *)
%o A363696 (PARI) a(n) = sumdiv(n, d, binomial(d+5, 5));
%Y A363696 Cf. A007503, A116963, A363628, A363695.
%Y A363696 Cf. A101289, A363606.
%K A363696 nonn,easy
%O A363696 1,1
%A A363696 _Seiichi Manyama_, Jun 16 2023