cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363702 Let m be the least integer for which there exists a strictly increasing sequence u of n integers in {1..m} such that x = (2 * Sum_{k=1..n} k*prime(u(k))) / (n*(n+1)) is an integer. a(n) is the least x, or -1 if no such integer x exists.

Original entry on oeis.org

2, 4, 11, 12, 12, 12, 16, 21, 24, 22, 24, 31, 32, 34, 41, 40, 42, 44, 49, 50, 52, 52, 61, 63, 62, 68, 70, 75, 74, 82, 88, 89, 92, 92, 102, 106, 106, 106, 113, 118, 118, 118, 125, 127, 132, 132, 141, 148, 142, 150, 154, 158, 158, 162, 171, 175, 172, 178, 181, 187
Offset: 1

Views

Author

Jean-Marc Rebert, Jun 16 2023

Keywords

Examples

			1*prime(1) + 2*prime(3) = 12, 1 + 2 = 3 and 12/3 = 4 is an integer and no other strictly increasing sequence of 2 primes <= prime(3) gives a lesser result, so a(2) = 4.
1*prime(3) + 2*prime(5) + 3*prime(6) = 5 + 2*11 + 3*13 = 66, 66/6 = 11 is an integer and no other strictly increasing sequence of 3 primes <= prime(6) gives a lesser result, so a(3) = 11.
		

Crossrefs

Programs

  • PARI
    is(u)={my(s=0,c=0,n=#u,sc=n*(n+1)/2); for(i=1,n,my(p=prime(u[i])); s+=i*p); s%sc==0}
    f(u)={my(s=0,n=#u,vc=vector(n,x,x),sc=n*(n+1)/2,v=[]); if(is(u),for(i=1,#u,v=concat(v,prime(u[i])));s=v*vc~; return(s/sc)); -1}
    find(m=n,n)={my(x=m,sol=[],solmin=-1); forsubset([m,n],p,my(vp=Vec(p)); if(is(vp),my(x=f(vp)); if(solmin==-1,solmin=x); if(solmin>0&&x