cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363710 a(n) is the number of pairs of nonnegative integers (x, y) such that x + y = n and A003188(x) AND A003188(y) = 0 (where AND denotes the bitwise AND operator).

This page as a plain text file.
%I A363710 #11 Jun 02 2025 16:49:53
%S A363710 1,2,2,2,4,4,2,2,4,8,6,4,6,4,2,2,4,8,10,8,12,12,6,4,6,12,8,4,6,4,2,2,
%T A363710 4,8,10,8,16,20,10,8,12,24,20,12,16,12,6,4,6,12,16,12,16,16,8,4,6,12,
%U A363710 8,4,6,4,2,2,4,8,10,8,16,20,10,8,16,32,28,20,28
%N A363710 a(n) is the number of pairs of nonnegative integers (x, y) such that x + y = n and A003188(x) AND A003188(y) = 0 (where AND denotes the bitwise AND operator).
%C A363710 Equivalently, a(n) is the number of k >= 0 such that A332497(k) + A332498(k) = n.
%C A363710 The set of pairs of nonnegative integers (x, y) such that A003188(x) AND A003188(y) = 0 is related to the T-square fractal (see illustration in Links section).
%H A363710 Rémy Sigrist, <a href="/A363710/b363710.txt">Table of n, a(n) for n = 0..8192</a>
%H A363710 Rémy Sigrist, <a href="/A332497/a332497.png">Scatterplot of (x, y) such that x, y < 2^10 and A003188(x) AND A003188(y) = 0</a>
%H A363710 Wikipedia, <a href="https://en.wikipedia.org/wiki/T-square_(fractal)">T-square (fractal)</a>
%F A363710 a(n) = 2 iff n belongs to A075427.
%e A363710 For n = 8:
%e A363710 - we have:
%e A363710   k  A332497(8-k)  A332497(k)  A332497(8-k) AND A332497(k)
%e A363710   -  ------------  ----------  ---------------------------
%e A363710   0            12           0                            0
%e A363710   1             4           1                            0
%e A363710   2             5           3                            1
%e A363710   3             7           2                            2
%e A363710   4             6           6                            6
%e A363710   5             2           7                            2
%e A363710   6             3           5                            1
%e A363710   7             1           4                            0
%e A363710   8             0          12                            0
%e A363710 - so a(8) = 4.
%o A363710 (PARI) a(n) = 2*sum(k=0, n\2, bitand(bitxor(n-k, (n-k)\2), bitxor(k, k\2))==0) - (n==0)
%o A363710 (Python) A363710=lambda n: sum(map(lambda k: not (k^k>>1)&(n-k^n-k>>1),range(n+1>>1)))<<1 if n else 1 # _Natalia L. Skirrow_, Jun 22 2023
%Y A363710 Cf. A003188, A075427, A332497, A332498.
%K A363710 nonn,base
%O A363710 0,2
%A A363710 _Rémy Sigrist_, Jun 17 2023