This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363710 #11 Jun 02 2025 16:49:53 %S A363710 1,2,2,2,4,4,2,2,4,8,6,4,6,4,2,2,4,8,10,8,12,12,6,4,6,12,8,4,6,4,2,2, %T A363710 4,8,10,8,16,20,10,8,12,24,20,12,16,12,6,4,6,12,16,12,16,16,8,4,6,12, %U A363710 8,4,6,4,2,2,4,8,10,8,16,20,10,8,16,32,28,20,28 %N A363710 a(n) is the number of pairs of nonnegative integers (x, y) such that x + y = n and A003188(x) AND A003188(y) = 0 (where AND denotes the bitwise AND operator). %C A363710 Equivalently, a(n) is the number of k >= 0 such that A332497(k) + A332498(k) = n. %C A363710 The set of pairs of nonnegative integers (x, y) such that A003188(x) AND A003188(y) = 0 is related to the T-square fractal (see illustration in Links section). %H A363710 Rémy Sigrist, <a href="/A363710/b363710.txt">Table of n, a(n) for n = 0..8192</a> %H A363710 Rémy Sigrist, <a href="/A332497/a332497.png">Scatterplot of (x, y) such that x, y < 2^10 and A003188(x) AND A003188(y) = 0</a> %H A363710 Wikipedia, <a href="https://en.wikipedia.org/wiki/T-square_(fractal)">T-square (fractal)</a> %F A363710 a(n) = 2 iff n belongs to A075427. %e A363710 For n = 8: %e A363710 - we have: %e A363710 k A332497(8-k) A332497(k) A332497(8-k) AND A332497(k) %e A363710 - ------------ ---------- --------------------------- %e A363710 0 12 0 0 %e A363710 1 4 1 0 %e A363710 2 5 3 1 %e A363710 3 7 2 2 %e A363710 4 6 6 6 %e A363710 5 2 7 2 %e A363710 6 3 5 1 %e A363710 7 1 4 0 %e A363710 8 0 12 0 %e A363710 - so a(8) = 4. %o A363710 (PARI) a(n) = 2*sum(k=0, n\2, bitand(bitxor(n-k, (n-k)\2), bitxor(k, k\2))==0) - (n==0) %o A363710 (Python) A363710=lambda n: sum(map(lambda k: not (k^k>>1)&(n-k^n-k>>1),range(n+1>>1)))<<1 if n else 1 # _Natalia L. Skirrow_, Jun 22 2023 %Y A363710 Cf. A003188, A075427, A332497, A332498. %K A363710 nonn,base %O A363710 0,2 %A A363710 _Rémy Sigrist_, Jun 17 2023