A363930 Irregular table T(n, k), n >= 0, k = 1..A363710(n), read by rows; the n-th row lists the nonnegative numbers m <= n such that A003188(m) AND A003188(n-m) = 0 (where AND denotes the bitwise AND operator).
0, 0, 1, 0, 2, 0, 3, 0, 1, 3, 4, 0, 1, 4, 5, 0, 6, 0, 7, 0, 1, 7, 8, 0, 1, 2, 3, 6, 7, 8, 9, 0, 2, 3, 7, 8, 10, 0, 3, 8, 11, 0, 1, 3, 9, 11, 12, 0, 1, 12, 13, 0, 14, 0, 15, 0, 1, 15, 16, 0, 1, 2, 3, 14, 15, 16, 17, 0, 2, 3, 4, 6, 12, 14, 15, 16, 18, 0, 3, 4, 7, 12, 15, 16, 19
Offset: 0
Examples
Table T(n, k) begins: n n-th row -- ---------------------- 0 0 1 0, 1 2 0, 2 3 0, 3 4 0, 1, 3, 4 5 0, 1, 4, 5 6 0, 6 7 0, 7 8 0, 1, 7, 8 9 0, 1, 2, 3, 6, 7, 8, 9 10 0, 2, 3, 7, 8, 10 11 0, 3, 8, 11 12 0, 1, 3, 9, 11, 12 13 0, 1, 12, 13 14 0, 14 15 0, 15 16 0, 1, 15, 16
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..13126 (rows for n = 0..2^9 flattened)
- Wikipedia, T-square (fractal)
Programs
-
PARI
row(n) = { select (m -> bitand(bitxor(m, m\2), bitxor(n-m, (n-m)\2))==0, [0..n]) }
Comments