cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363718 Irregular triangle read by rows. An infinite binary tree which has root node 1 in row n = 0. Each node then has left child m-1 if greater than 0 and right child m+1, where m is the value of the parent node.

This page as a plain text file.
%I A363718 #42 Sep 20 2024 06:09:35
%S A363718 1,2,1,3,2,2,4,1,3,1,3,3,5,2,2,4,2,2,4,2,4,4,6,1,3,1,3,3,5,1,3,1,3,3,
%T A363718 5,1,3,3,5,3,5,5,7,2,2,4,2,2,4,2,4,4,6,2,2,4,2,2,4,2,4,4,6,2,2,4,2,4,
%U A363718 4,6,2,4,4,6,4,6,6,8,1,3,1,3,3,5,1,3,1
%N A363718 Irregular triangle read by rows. An infinite binary tree which has root node 1 in row n = 0. Each node then has left child m-1 if greater than 0 and right child m+1, where m is the value of the parent node.
%C A363718 The paths through the tree represent the compositions counted in A173258 that have first part 1.
%C A363718 For rows n > 1, row n starts with row n-2.
%C A363718 Any positive number k will first appear in the (k-1)-th row and thereafter in rows of opposite parity to k. The number of times k will appear in row n is A053121(n,k-1).
%C A363718 Row n >= 1 gives the row lengths of the Christmas tree pattern of order n (cf. A367508). - _Paolo Xausa_, Nov 26 2023
%C A363718 A new row can be generated by applying the morphism 1 -> 2, t -> {t-1,t+1} (for t > 1) to the previous row. - _Paolo Xausa_, Dec 08 2023
%H A363718 Paolo Xausa, <a href="/A363718/b363718.txt">Table of n, a(n) for n = 0..13494</a> (rows 0..15 of the triangle, flattened).
%e A363718 Triangle begins:
%e A363718   n=0:  1;
%e A363718   n=1:  2;
%e A363718   n=2:  1, 3;
%e A363718   n=3:  2, 2, 4;
%e A363718   n=4:  1, 3, 1, 3, 3, 5;
%e A363718   n=5:  2, 2, 4, 2, 2, 4, 2, 4, 4, 6;
%e A363718   n=6:  1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7;
%e A363718   ...
%e A363718 The binary tree starts with root 1 in row n = 0. In row n = 2, the parent node 2 has the first left child since 2 - 1 > 0.
%e A363718 The tree begins:
%e A363718 row
%e A363718 [n]
%e A363718 [0]                   1
%e A363718                        \
%e A363718 [1]            _________2_________
%e A363718               /                   \
%e A363718 [2]          1                _____3_____
%e A363718               \              /           \
%e A363718 [3]          __2__        __2__         __4__
%e A363718             /     \      /     \       /     \
%e A363718 [4]        1       3    1       3     3       5
%e A363718             \     / \    \     / \   / \     / \
%e A363718 [5]          2   2   4    2   2   4 2   4   4   6
%e A363718 .
%t A363718 SubstitutionSystem[{1->{2},t_/;t>1:>{t-1,t+1}},{1},8] (* _Paolo Xausa_, Dec 23 2023 *)
%o A363718 (Python)
%o A363718 def A363718_rowlist(root,row):
%o A363718     A = [[root]]
%o A363718     for i in range(0,row):
%o A363718         A.append([])
%o A363718         for j in range(0,len(A[i])):
%o A363718             if A[i][j] != 1:
%o A363718                 A[i+1].append(A[i][j]-1)
%o A363718             A[i+1].append(A[i][j]+1)
%o A363718     return(A)
%o A363718 A363718_rowlist(1, 8)
%Y A363718 Cf. A001405 (row lengths), A000079 (row sums).
%Y A363718 Cf. A000108, A007001, A053121, A173258, A367508, A367951, A367953.
%K A363718 nonn,easy,tabf
%O A363718 0,2
%A A363718 _John Tyler Rascoe_, Jun 17 2023