cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363719 Number of integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

This page as a plain text file.
%I A363719 #19 Jun 22 2023 18:45:00
%S A363719 1,2,2,3,2,4,2,5,3,5,2,10,2,7,7,12,2,18,2,24,16,13,2,58,15,18,37,60,2,
%T A363719 123,2,98,79,35,103,332,2,49,166,451,2,515,2,473,738,92,2,1561,277,
%U A363719 839,631,1234,2,2043,1560,2867,1156,225,2,9020
%N A363719 Number of integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.
%C A363719 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%C A363719 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
%C A363719 Without loss of generality, we may assume there is a unique middle-part (A238478).
%C A363719 Includes all constant partitions.
%e A363719 The a(n) partitions for n = 1, 2, 4, 6, 8, 12, 14, 16 (A..G = 10..16):
%e A363719   1  2   4     6       8         C             E               G
%e A363719      11  22    33      44        66            77              88
%e A363719          1111  222     2222      444           2222222         4444
%e A363719                111111  3221      3333          3222221         5443
%e A363719                        11111111  4332          3322211         6442
%e A363719                                  5331          4222211         7441
%e A363719                                  222222        11111111111111  22222222
%e A363719                                  322221                        32222221
%e A363719                                  422211                        33222211
%e A363719                                  111111111111                  42222211
%e A363719                                                                52222111
%e A363719                                                                1^16
%t A363719 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
%t A363719 Table[Length[Select[IntegerPartitions[n], {Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
%Y A363719 For unequal instead of equal: A363720, ranks A363730, unique mode A363725.
%Y A363719 The odd-length case is A363721.
%Y A363719 These partitions have ranks A363727, nonprime A363722.
%Y A363719 The case of non-constant partitions is A363728, ranks A363729.
%Y A363719 The version for factorizations is A363741, see A359909, A359910.
%Y A363719 Just two statistics:
%Y A363719 - (mean) = (median) gives A240219, also A359889, A359895, A359897, A359899.
%Y A363719 - (mean) != (median) gives A359894, also A359890, A359896, A359898, A359900.
%Y A363719 - (mean) = (mode) gives A363723, see A363724, A363731.
%Y A363719 - (median) = (mode) gives A363740.
%Y A363719 A000041 counts partitions, strict A000009.
%Y A363719 A008284 counts partitions by length (or negative mean), strict A008289.
%Y A363719 A359893 and A359901 count partitions by median, odd-length A359902.
%Y A363719 A362608 counts partitions with a unique mode.
%Y A363719 Cf. A027193, A237984, A325347, A326567/A326568, A327472, A363726, A363742.
%K A363719 nonn
%O A363719 1,2
%A A363719 _Gus Wiseman_, Jun 19 2023