This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363720 #9 Jun 22 2023 23:34:54 %S A363720 0,0,0,0,0,0,0,2,3,5,7,16,17,34,38,50,79,115,123,198,220,291,399,536, %T A363720 605,815,1036,1241,1520,2059,2315,3132,3708,4491,5668,6587,7788,10259, %U A363720 12299,14515,17153,21558,24623,30876,35540,41476,52023,61931,70811,85545 %N A363720 Number of integer partitions of n with different mean, median, and mode. %C A363720 If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode. %C A363720 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %C A363720 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}. %e A363720 The a(7) = 2 through a(11) = 16 partitions: %e A363720 (421) (431) (621) (532) (542) %e A363720 (3211) (521) (3321) (541) (632) %e A363720 (4211) (4311) (631) (641) %e A363720 (5211) (721) (731) %e A363720 (32211) (5311) (821) %e A363720 (6211) (4322) %e A363720 (322111) (4421) %e A363720 (5321) %e A363720 (5411) %e A363720 (6311) %e A363720 (7211) %e A363720 (33221) %e A363720 (43211) %e A363720 (52211) %e A363720 (332111) %e A363720 (422111) %t A363720 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363720 Table[Length[Select[IntegerPartitions[n],{Mean[#]}!={Median[#]}!=modes[#]&]],{n,0,30}] %Y A363720 For equal instead of unequal: A363719, ranks A363727, odd-length A363721. %Y A363720 The case of a unique mode is A363725. %Y A363720 These partitions have ranks A363730. %Y A363720 For factorizations we have A363742, for equal A363741, see A359909, A359910. %Y A363720 Just two statistics: %Y A363720 - (mean) = (median) gives A240219, also A359889, A359895, A359897, A359899. %Y A363720 - (mean) != (median) gives A359894, also A359890, A359896, A359898, A359900. %Y A363720 - (mean) = (mode) gives A363723, see A363724, A363731. %Y A363720 - (median) = (mode) gives A363740. %Y A363720 A000041 counts partitions, strict A000009. %Y A363720 A008284 counts partitions by length (or negative mean), strict A008289. %Y A363720 A359893 and A359901 count partitions by median, odd-length A359902. %Y A363720 A362608 counts partitions with a unique mode. %Y A363720 Cf. A027193, A237984, A325347, A326567/A326568, A327472, A363726, A363728. %K A363720 nonn %O A363720 0,8 %A A363720 _Gus Wiseman_, Jun 21 2023