This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363721 #7 Jun 22 2023 23:34:48 %S A363721 1,1,2,1,2,2,2,1,3,3,2,2,2,5,7,1,2,8,2,9,16,11,2,2,15,16,37,33,2,44,2, %T A363721 1,79,33,103,127,2,47,166,39,2,214,2,384,738,90,2,2,277,185,631,1077, %U A363721 2,1065,1560,477,1156,223,2,2863 %N A363721 Number of odd-length integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode. %C A363721 The median of an odd-length partition is the middle part. %C A363721 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}. %e A363721 The a(n) partitions for n = {1, 3, 9, 14, 15, 18, 20, 22} (A..M = 10..22): %e A363721 1 3 9 E F I K M %e A363721 111 333 2222222 555 666 44444 22222222222 %e A363721 111111111 3222221 33333 222222222 54443 32222222221 %e A363721 3322211 43332 322222221 64442 33222222211 %e A363721 4222211 53331 332222211 65441 33322222111 %e A363721 63321 422222211 74432 42222222211 %e A363721 111111111111111 432222111 74441 43222222111 %e A363721 522222111 84431 44222221111 %e A363721 94421 52222222111 %e A363721 53222221111 %e A363721 62222221111 %t A363721 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363721 Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}] %Y A363721 All odd-length partitions are counted by A027193. %Y A363721 For just (mean) = (median) we have A359895, also A240219, A359899, A359910. %Y A363721 For just (mean) != (median) we have A359896, also A359894, A359900. %Y A363721 Allowing any length gives A363719, ranks A363727, non-constant A363728. %Y A363721 A000041 counts partitions, strict A000009. %Y A363721 A008284 counts partitions by length (or negative mean), strict A008289. %Y A363721 A359893 and A359901 count partitions by median, odd-length A359902. %Y A363721 A362608 counts partitions with a unique mode. %Y A363721 A363726 counts odd-length partitions with a unique mode. %Y A363721 Cf. A237984, A325347, A326567/A326568, A327472, A363720, A363740, A363741. %K A363721 nonn %O A363721 1,3 %A A363721 _Gus Wiseman_, Jun 21 2023