This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363722 #5 Jun 24 2023 07:56:08 %S A363722 4,8,9,16,25,27,32,49,64,81,90,121,125,128,169,243,256,270,289,343, %T A363722 361,512,525,529,550,625,729,756,810,841,961,1024,1331,1369,1666,1681, %U A363722 1849,1911,1950,2048,2187,2197,2209,2268,2401,2430,2625,2695,2700,2750,2809 %N A363722 Nonprime numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode. %C A363722 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A363722 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %C A363722 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %F A363722 Complement of A000040 in A363727. %F A363722 Assuming there is a unique mode, we have A326567(a(n))/A326568(a(n)) = A360005(a(n))/2 = A363486(a(n)) = A363487(a(n)). %e A363722 The terms together with their prime indices begin: %e A363722 4: {1,1} %e A363722 8: {1,1,1} %e A363722 9: {2,2} %e A363722 16: {1,1,1,1} %e A363722 25: {3,3} %e A363722 27: {2,2,2} %e A363722 32: {1,1,1,1,1} %e A363722 49: {4,4} %e A363722 64: {1,1,1,1,1,1} %e A363722 81: {2,2,2,2} %e A363722 90: {1,2,2,3} %e A363722 121: {5,5} %e A363722 125: {3,3,3} %e A363722 128: {1,1,1,1,1,1,1} %t A363722 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A363722 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363722 Select[Range[100],!PrimeQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&] %Y A363722 These partitions are counted by A363719 - 1 for n > 0. %Y A363722 Including primes gives A363727, counted by A363719. %Y A363722 For prime powers instead of just primes we have A363729, counted by A363728. %Y A363722 For unequal instead of equal we have A363730, counted by A363720. %Y A363722 A112798 lists prime indices, length A001222, sum A056239. %Y A363722 A326567/A326568 gives mean of prime indices. %Y A363722 A356862 ranks partitions with a unique mode, counted by A362608. %Y A363722 A359178 ranks partitions with multiple modes, counted by A362610. %Y A363722 A360005 gives twice the median of prime indices. %Y A363722 A362611 counts modes in prime indices, triangle A362614. %Y A363722 A362613 counts co-modes in prime indices, triangle A362615. %Y A363722 A363486 gives least mode in prime indices, A363487 greatest. %Y A363722 Just two statistics: %Y A363722 - (mean) = (median): A359889, counted by A240219. %Y A363722 - (mean) != (median): A359890, counted by A359894. %Y A363722 - (mean) = (mode): counted by A363723, see A363724, A363731. %Y A363722 - (median) = (mode): counted by A363740. %Y A363722 Cf. A000961, A327473, A327476, A359893, A359908, A360009, A360550, A363721, A363725, A363741. %K A363722 nonn %O A363722 1,1 %A A363722 _Gus Wiseman_, Jun 24 2023